
WLAN Toolbox™
User's Guide

R2019b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

WLAN Toolbox™ User's Guide
© COPYRIGHT 2015–2019 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History
October 2015 Online only New for Version 1.0 (Release 2015b)
March 2016 Online only Revised for Version 1.1 (Release 2016a)
September 2016 Online only Revised for Version 1.2 (Release 2016b)
March 2017 Online only Revised for Version 1.3 (Release 2017a)
September 2017 Online only Revised for Version 1.4 (Release 2017b)
March 2018 Online only Revised for Version 1.5 (Release 2018a)
September 2018 Online only Revised for Version 2.0 (Release 2018b)
March 2019 Online only Revised for Version 2.1 (Release 2019a)
September 2019 Online only Revised for Version 2.2 (Release 2019b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Tutorials
1

WLAN Parameterization . 1-2
Configuration Objects in WLAN Toolbox 1-2

WLAN Packet Structure . 1-4
Physical Layer Convergence Procedure Protocol Data Unit . . . 1-4

Multiuser HE Transmission . 1-33
Transmission Mode Options . 1-33
Allocation Index . 1-34

Mapping 802.11 Standards to WLAN Toolbox Configuration
Objects . 1-43

What is C Code Generation from MATLAB? 1-44
Using MATLAB Coder . 1-44
C/C++ Compiler Setup . 1-45
Functions and System Objects That Support Code Generation

. 1-45

Functions and System Objects Supported for MATLAB Coder
. 1-46

Build HE PPDU . 1-52
802.11ax Parameterization for Waveform Generation and

Simulation . 1-52

Build DMG PPDU . 1-82

Build S1G PPDU . 1-84

Build VHT PPDU . 1-86

iii

Contents

Build HT PPDU . 1-89

Build Non-HT PPDU . 1-92

Transmit and Recover L-SIG, VHT-SIG-A, VHT-SIG-B in Fading
Channel . 1-95

End-to-End VHT Simulation with Frequency Correction 1-99

Transmit-Receive Chain . 1-102
Transmit Processing Chain . 1-102
Receiver Processing Chain . 1-108

Delay Profile and Fluorescent Lighting Effects 1-115

Generate Multi-User VHT Waveform 1-120

Basic VHT Data Recovery Steps . 1-124

Packet Size and Duration Dependencies 1-129

iv Contents

Tutorials

• “WLAN Parameterization” on page 1-2
• “WLAN Packet Structure” on page 1-4
• “Multiuser HE Transmission” on page 1-33
• “Mapping 802.11 Standards to WLAN Toolbox Configuration Objects” on page 1-43
• “What is C Code Generation from MATLAB?” on page 1-44
• “Functions and System Objects Supported for MATLAB Coder” on page 1-46
• “Build HE PPDU” on page 1-52
• “Build DMG PPDU” on page 1-82
• “Build S1G PPDU” on page 1-84
• “Build VHT PPDU” on page 1-86
• “Build HT PPDU” on page 1-89
• “Build Non-HT PPDU” on page 1-92
• “Transmit and Recover L-SIG, VHT-SIG-A, VHT-SIG-B in Fading Channel”

on page 1-95
• “End-to-End VHT Simulation with Frequency Correction” on page 1-99
• “Transmit-Receive Chain” on page 1-102
• “Delay Profile and Fluorescent Lighting Effects” on page 1-115
• “Generate Multi-User VHT Waveform” on page 1-120
• “Basic VHT Data Recovery Steps” on page 1-124
• “Packet Size and Duration Dependencies” on page 1-129

1

WLAN Parameterization
WLAN Toolbox configuration objects initialize, store, and validate configuration
properties. The functions in the toolbox use these properties to initialize parameter
settings that define the characteristics of waveforms generated and to define the signal
recovery process.

Configuration Objects in WLAN Toolbox
The configuration objects are designed specifically as containers to store properties. They
also provide some level of data validation for the function inputs that they maintain.
Functions perform further data validation across input settings based on run-time
conditions.

The configuration objects are optimized for iterative computations that process large
streams of data, such as communications systems.

WLAN Toolbox configuration objects define and configure format-specific and function-
specific properties. The reference page for each object contains descriptions, valid
settings, ranges, and other information about the object properties.

• wlanHESUConfig — This high-efficiency single-user (HE SU) configuration object
defines and configures HE SU and HE extended-range single-user (HE ER SU)
transmission PPDUs.

• wlanHEMUConfig — This HE multiuser (HE MU) configuration object defines and
configures HE MU transmission PPDUs.

• wlanDMGConfig — This directional multi-gigabit (DMG) configuration object defines
and configures DMG transmission PPDUs.

• wlanS1GConfig — This sub-1-GHz (S1G) configuration object defines and configures
S1G transmission PPDUs.

• wlanVHTConfig — This very-high-throughput (VHT) configuration object defines and
configures VHT transmission PPDUs.

• wlanHTConfig — This high-throughput HT configuration object defines and
configures HT transmission PPDUs.

• wlanNonHTConfig — This non-high-throughput (non-HT) configuration object defines
and configures non-HT transmission PPDUs.

1 Tutorials

1-2

• wlanHERecoveryConfig — This HE recovery configuration object defines and
configures information recovery characteristics for received HE SU, HE ER SU, and
HE MU PPDUs

• wlanRecoveryConfig — This recovery configuration object defines and configures
information recovery characteristics for received VHT, HT, and non-HT PPDUs.

See Also
“WLAN Packet Structure” on page 1-4 | “Mapping 802.11 Standards to WLAN Toolbox
Configuration Objects” on page 1-43 | “Create Configuration Objects” | “What Is
WLAN?” | “Multiuser HE Transmission” on page 1-33

 See Also

1-3

WLAN Packet Structure

Physical Layer Convergence Procedure Protocol Data Unit
IEEE® 802.11™1 is a packet-based protocol. Each physical layer conformance procedure
(PLCP) protocol data unit (PPDU) contains preamble and data fields. The preamble field
contains the transmission vector format information. The data field contains the user
payload and higher layer headers, such as medium access control (MAC) fields and cyclic
redundancy check (CRC). The transmission vector format and the PPDU packet structure
vary between 802.11 versions. The transmission vector (TXVECTOR) format parameter is
classified as:

• HE to specify a high-efficiency PHY implementation.

• HE refers to fields formatted for association with 802.11ax™ data. Reference [6]
defines and describes the HE PHY layer and PPDU.

• For HE, the TXVECTOR parameters, as defined in Table 28-1 of [6], determines the
structure of PPDUs transmitted by an HE STA.

• DMG to specify a directional multi-gigabit PHY implementation.

• DMG refers to preamble fields formatted for association with 802.11ad™ data.
IEEE Std 802.11ad-2012 [5] Sections 21.3–21.6 define and describe the DMG PHY
layer and PPDU.

• For DMG, the TXVECTOR parameters, as defined in IEEE Std 802.11ad-2012 [5]
Table 21-1, determines the structure of PPDUs transmitted by a DMG STA. For a
DMG STA, the MCS parameter determines the overall structure of the DMG PPDU.

• S1G to specify a sub-1-GHz PHY implementation.

• S1G refers to preamble fields formatted for association with 802.11ah™ data. The
draft standard IEEE P802.11ah/D5.0 defines and describes the S1G PHY layer and
PPDU.

• For S1G, the TXVECTOR parameters, as defined in IEEE P802.11ah/D5.0, Table
24-1, determines the structure of PPDUs transmitted by an S1G STA. For an S1G
STA, the FORMAT parameter determines the overall structure of the S1G PPDU.

• VHT to specify a very-high-throughput PHY implementation.

1. IEEE Std 802.11-2016 Adapted and reprinted with permission from IEEE. Copyright IEEE 2016. All rights
reserved.

1 Tutorials

1-4

• VHT refers to preamble fields formatted for association with 802.11ac™ data. IEEE
IEEE Std 802.11ac-2013 [4], Section 22 defines and describes the VHT PHY layer
and PPDU.

• For VHT, the TXVECTOR parameters, as defined in IEEE Std 802.11ac-2013 [4],
Table 22-1, determine the structure of PPDUs transmitted by a VHT STA. For a VHT
STA, the FORMAT parameter determines the overall structure of the PPDU and
enables:

• Non-HT format (NON_HT), based on Section 18 and including non-HT duplicate
format.

• HT-mixed format (HT_MF), as specified in Section 20.
• HT-greenfield format (HT_GF), as specified in Section 20. WLAN Toolbox does

not support HT_GF format.
• VHT format (VHT), as specified in Section 22. The VHT format PPDUs contain a

preamble compatible with Section 18 and Section 20 STAs. The non-VHT
portions of the VHT preamble (the parts that precede the VHT-SIG-A field) are
defined to enable decoding of the PPDU by VHT STAs.

• HT to specify a high throughput PHY implementation.

• HT refers to preamble fields formatted for association with 802.11n™ data. IEEE
Std 802.11-2012 [3], Section 20 defines and describes the HT PHY layer and PPDU.
The standard defines two HT formats:

• HT_MF indicates the HT-mixed format and contains a preamble compatible with
HT and non-HT receivers. Support for HT-mixed format is mandatory.

• • HT_GF indicates the HT-greenfield format and does not contain a non-HT
compatible part. WLAN Toolbox does not support HT_GF format.

• non-HT to specify a PHY implementation that is not HT and is not VHT.

• Non-HT refers to preamble fields formatted for association with pre-802.11n data.
IEEE Std 802.11-2012 [3], Section 18 defines and describes the OFDM PHY layer
and PPDU for non-HT transmission. In addition to supporting non-HT
synchronization, the non-HT preamble fields are used in support of HT and VHT
synchronization.

The table shows 802.11 versions that the toolbox supports, along with the supported
TXVECTOR options and associated modulation formats.

 WLAN Packet Structure

1-5

802.11 Version Transmission
Vector Format

Modulation Format Bandwidths/MHz

802.11b™ non-HT DSSS/CCK 11
802.11a™ non-HT OFDM only 5, 10, 20
802.11j™ non-HT OFDM only 10
802.11p™ non-HT OFDM only 5, 10
802.11g™ non-HT OFDM 20

non-HT DSSS/CCK 11
802.11n (Wi-Fi 4) HT_MF, Non-HT OFDM only 20, 40
802.11ac (Wi-Fi 5) VHT, HT_MF, Non-HT OFDM only 20, 40, 80, 160
802.11ah S1G OFDM only 1, 2, 4, 8, 16
802.11ad DMG Single Carrier and

OFDM
2640

802.11ax (Wi-Fi 6) HE OFDMA 20, 40, 80, 160

WLAN Toolbox configuration objects define the properties that enable creation of PPDUs
and waveforms for the specified 802.11 transmission format. See wlanHEMUConfig,
wlanHESUConfig, wlanDMGConfig, wlanS1GConfig, wlanVHTConfig,
wlanHTConfig, and wlanNonHTConfig.

HE Format PPDU Field Structure

In HE, there are four transmission modes supported. The field structure for HE PPDUs
consists of preamble and data portions. The legacy preamble fields (L-STF, L-LTF, and L-
SIG) are common to all four HE transmission modes and with the VHT, HT, and non-HT
format preambles.

HE format preamble fields include additional format-specific signaling fields. Each format
defines a data field for transmission of user payload data.

1 Tutorials

1-6

PPDU Field Abbreviation Description
L-STF Non-HT Short Training field
L-LTF Non-HT Long Training field
L-SIG Non-HT Signal field
RL-SIG Repeated Non-HT Signal field
HE-SIG-A HE Signal A field
HE-SIG-B HE Signal B field
HE-STF HE Short Training field
HE-LTF HE Long Training field
Data Data field carrying the PSDUs
PE Packet Extension field

 WLAN Packet Structure

1-7

The RL-SIG, HE-SIG-A, HE-STF, HE-LTF, and PE fields are present in all HE PPDU
formats. The HE-SIG-B field is present only in the HE MU PPDU. For more information,
see IEEE P802.11ax/D2.0 [6], Section 28.3.4.

DMG Format PPDU Field Structure

In DMG, there are three physical layer (PHY) modulation schemes supported: control,
single carrier, and OFDM.

The single-carrier chip timing, TC = 1/FC = 0.57 ns. For more information, see Waveform
Sampling Rate on the wlanWaveformGenerator function reference page.

The supported DMG format PPDU field structures each contain these fields:

• The preamble contains a short training field (STF) and channel estimation field (CEF).
The preamble is used for packet detection, AGC, frequency offset estimation,
synchronization, indication of modulation type (Control, SC, or OFDM), and channel

1 Tutorials

1-8

estimation. The format of the preamble is common to the Control, SC, and OFDM PHY
packets.

• The STF is composed of Golay Ga sequences as specified in 802.11ad-2012 [5],
Section 21.3.6.2.

• The CEF is composed of Golay Gu and Gv sequences as specified in 802.11ad-2012
[5], Section 21.3.6.3.

• When the header and data fields of the packet are modulated using a single
carrier (control PHY and SC PHY), the Golay sequencing for the CEF waveform
is shown in 802.11ad-2012 [5], Figure 21-5.

• When the header and data fields of the packet are modulated using OFDM
(OFDM PHY), the Golay sequencing for the CEF waveform is shown in
802.11ad-2012 [5], Figure 21-6.

• The header field is decoded by the receiver to determine transmission parameters.
• The data field is variable in length. It carries the user data payload.
• The training fields (AGC and TRN-R/T subfields) are optional. They can be included to
refine beamforming.

IEEE 802.11ad-2012 [5] specifies the common aspects of the DMG PPDU packet structure
in Section 21.3. The PHY modulation-specific aspects of the packet structure are specified
in these sections:

• The DMG control PHY packet structure is specified in Section 21.4.
• The DMG OFDM PHY packet structure is specified in Section 21.5.
• The DMG SC PHY packet structure is specified in Section 21.6.

S1G Format PPDU Field Structure

In S1G, there are three transmission modes:

• ≥2 MHz long preamble mode
• ≥2 MHz short preamble mode
• 1 MHz mode

Each transmission mode has a specific PPDU preamble structure:

• An S1G ≥2 MHz long preamble mode PPDU supports single-user and multiuser
transmissions. The long preamble PPDU consists of two portions; the omni-directional
portion and the beam-changeable portion.

 WLAN Packet Structure

1-9

• The omni-directional portion is transmitted to all users without beamforming. It
consists of three fields:

• The short training field (STF) is used for coarse synchronization.
• The long training field (LTF1) is used for fine synchronization and initial channel

estimation.
• The signal A field (SIG-A) is decoded by the receiver to determine transmission

parameters relevant to all users.
• The data portion can be beamformed to each user. It consists of four fields:

• The beamformed short training field (D-STF) is used by the receiver for
automatic gain control.

• The beamformed long training fields (D-LTF-N) are used for MIMO channel
estimation.

• The signal B field (SIG-B) in a multiuser transmission, signals the MCS for each
user. In a single-user transmission, the MCS is signaled in the SIG-A field of the
omni-directional portion of the preamble. Therefore, in a single-user
transmission the SIG-B symbol transmitted is an exact repetition of the first D-
LTF. This repetition allows for improved channel estimation.

• The data field is variable in length. It carries the user data payload.
• An S1G ≥2 MHz short preamble mode PPDU supports single-user transmissions. All
fields in the PPDU can be beamformed.

1 Tutorials

1-10

The PPDU consists of these five fields:

• The short training field (STF) is used for coarse synchronization.
• The first long training field (LTF1) is used for fine synchronization and initial

channel estimation.
• The signaling field (SIG) is decoded by the receiver to determine transmission

parameters.
• The subsequent long training fields (LTF2-N) are used for MIMO channel

estimation. NSYMBOLS = 1 per subsequent LTF
• The data field is variable in length. It carries the user data payload.

• An S1G 1 MHz mode PPDU supports single-user transmissions. It is composed of the
same five fields as the S1G ≥2 MHz short preamble mode PPDU and all fields can be
beamformed. An S1G 1 MHz mode PPDU has longer STF, LTF1, and SIG fields, so this
mode can achieve sensitivity that is similar to the S1G ≥2 MHz short-preamble mode
transmissions.

 WLAN Packet Structure

1-11

VHT, HT-Mixed, and Non-HT Format PPDU Field Structures

The field structure for VHT, HT, and non-HT PPDUs consist of preamble and data portions.
The legacy preamble fields (L-STF, L-LTF, and L-SIG) are common to VHT, HT, and non-HT
format preambles. VHT and HT format preamble fields include additional format-specific
training and signaling fields. Each format defines a data field for transmission of user
payload data.

1 Tutorials

1-12

PPDU Field Abbreviation Description
L-STF Non-HT Short Training field
L-LTF Non-HT Long Training field
L-SIG Non-HT SIGNAL field
HT-SIG HT SIGNAL field
HT-STF HT Short Training field
HT-LTF HT Long Training field, multiple HT-LTFs

are transmitted as indicated by the MCS
VHT-SIG-A VHT Signal A field
VHT-STF VHT Short Training field
VHT-LTF VHT Long Training field

 WLAN Packet Structure

1-13

PPDU Field Abbreviation Description
VHT-SIG-B VHT Signal B field
Data VHT, HT, and non-HT Data fields include the

service bits, PSDU, tail bits, and pad bits

For more information, see IEEE 802.11-2012 [3], Section 20.3.2.

Non-HT (Legacy) Short Training Field

The legacy short training field (L-STF) is the first field of the 802.11 OFDM PLCP legacy
preamble. The L-STF is a component of VHT, HT, and non-HT PPDUs.

The L-STF duration varies with channel bandwidth.

Channel Bandwidth
(MHz)

Subcarrier
Frequency
Spacing, ΔF (kHz)

Fast Fourier
Transform (FFT)
Period
(TFFT = 1 / ΔF)

L-STF Duration
(TSHORT = 10 × TFFT /
 4)

20, 40, 80, and 160 312.5 3.2 μs 8 μs
10 156.25 6.4 μs 16 μs
5 78.125 12.8 μs 32 μs

Because the sequence has good correlation properties, it is used for start-of-packet
detection, for coarse frequency correction, and for setting the AGC. The sequence uses 12
of the 52 subcarriers that are available per 20 MHz channel bandwidth segment. For 5

1 Tutorials

1-14

MHz, 10 MHz, and 20 MHz bandwidths, the number of channel bandwidths segments is
1.

Non-HT (Legacy) Long Training Field

The legacy long training field (L-LTF) is the second field in the 802.11 OFDM PLCP legacy
preamble. The L-LTF is a component of VHT, HT, and non-HT PPDUs.

Channel estimation, fine frequency offset estimation, and fine symbol timing offset
estimation rely on the L-LTF.

The L-LTF is composed of a cyclic prefix (CP) followed by two identical long training
symbols (C1 and C2). The CP consists of the second half of the long training symbol.

The L-LTF duration varies with channel bandwidth.

 WLAN Packet Structure

1-15

Channel
Bandwidth
(MHz)

Subcarrier
Frequency
Spacing, ΔF
(kHz)

Fast Fourier
Transform
(FFT) Period
(TFFT = 1 / ΔF)

Cyclic Prefix or
Training
Symbol Guard
Interval (GI2)
Duration
(TGI2 = TFFT / 2)

L-LTF Duration
(TLONG = TGI2 +
2 × TFFT)

20, 40, 80, and
160

312.5 3.2 μs 1.6 μs 8 μs

10 156.25 6.4 μs 3.2 μs 16 μs
5 78.125 12.8 μs 6.4 μs 32 μs

Non-HT (Legacy) Signal Field

The legacy signal (L-SIG) field is the third field of the 802.11 OFDM PLCP legacy
preamble. It consists of 24 bits that contain rate, length, and parity information. The L-
SIG is a component of VHT, HT, and non-HT PPDUs. It is transmitted using BPSK
modulation with rate 1/2 binary convolutional coding (BCC).

The L-SIG is one OFDM symbol with a duration that varies with channel bandwidth.

1 Tutorials

1-16

Channel
Bandwidth
(MHz)

Subcarrier
frequency
spacing, ΔF
(kHz)

Fast Fourier
Transform
(FFT) period
(TFFT = 1 / ΔF)

Guard Interval
(GI) Duration
(TGI = TFFT / 4)

L-SIG duration
(TSIGNAL = TGI +
TFFT)

20, 40, 80, and
160

312.5 3.2 μs 0.8 μs 4 μs

10 156.25 6.4 μs 1.6 μs 8 μs
5 78.125 12.8 μs 3.2 μs 16 μs

The L-SIG contains packet information for the received configuration,

• Bits 0 through 3 specify the data rate (modulation and coding rate) for the non-HT
format.

Rate (bits
0–3)

Modulation Coding rate
(R)

Data Rate (Mb/s)
20 MHz
channel

bandwidth

10 MHz
channel

bandwidth

5 MHz
channel

bandwidth
1101 BPSK 1/2 6 3 1.5
1111 BPSK 3/4 9 4.5 2.25
0101 QPSK 1/2 12 6 3
0111 QPSK 3/4 18 9 4.5
1001 16-QAM 1/2 24 12 6
1011 16-QAM 3/4 36 18 9
0001 64-QAM 2/3 48 24 12

 WLAN Packet Structure

1-17

Rate (bits
0–3)

Modulation Coding rate
(R)

Data Rate (Mb/s)
20 MHz
channel

bandwidth

10 MHz
channel

bandwidth

5 MHz
channel

bandwidth
0011 64-QAM 3/4 54 27 13.5

For HT and VHT formats, the L-SIG rate bits are set to '1 1 0 1'. Data rate
information for HT and VHT formats is signaled in format-specific signaling fields.

• Bit 4 is reserved for future use.
• Bits 5 through 16:

• For non-HT, specify the data length (amount of data transmitted in octets) as
described in IEEE Std 802.11-2012, Table 18-1 and Section 9.23.4.

• For HT-mixed, specify the transmission time as described in IEEE Std 802.11-2012,
Section 20.3.9.3.5 and Section 9.23.4.

• For VHT, specify the transmission time as described in IEEE Std 802.11ac-2013,
Section 22.3.8.2.4.

• Bit 17 has the even parity of bits 0 through 16.
• Bits 18 through 23 contain all zeros for the signal tail bits.

Note Signaling fields added for HT (wlanHTSIG) and VHT (wlanVHTSIGA,
wlanVHTSIGB) formats provide data rate and configuration information for those formats.

• For the HT-mixed format, IEEE Std 802.11-2012, Section 20.3.9.4.3 describes HT-SIG
bit settings.

• For the VHT format, IEEE Std 802.11ac-2013, Section 22.3.8.3.3 and Section
22.3.8.3.6 describe bit settings for VHT-SIG-A and VHT-SIG-B, respectively.

Non-HT Data Field

The non-high throughput data (non-HT data) field is used to transmit MAC frames and is
composed of a service field, a PSDU, tail bits, and pad bits.

1 Tutorials

1-18

• Service field — Contains 16 zeros to initialize the data scrambler.
• PSDU — Variable-length field containing the PLCP service data unit (PSDU).
• Tail — Tail bits required to terminate a convolutional code. The field uses six zeros for

the single encoding stream.
• Pad Bits — Variable-length field required to ensure that the non-HT data field

contains an integer number of symbols.

Processing of an 802.11a data field is defined in IEEE 802.11-2012 [3], Section 18.3.5.

The six tail bits are set to zero after a 127-bit scrambling sequence has been applied to
the full data field. The receiver uses the first seven bits of the service field to determine
the initial state of the scrambler. Rate 1/2 BCC encoding is performed on the scrambled
data. The zeroed tail bits cause the BCC encoder to return to a zero state. Puncturing is
applied as needed for the selected rate.

The coded data is grouped into several bits per symbol, and two permutations of block
interleaving are applied to each group of data. The groups of bits are then modulated to
the selected rate (BPSK, QPSK, 16-QAM, or 64-QAM) and the complex symbols are then
mapped onto corresponding subcarriers. For each symbol, the pilot subcarriers are
inserted. An IFFT is used to transform each symbol group to the time domain and the
cyclic prefix is prepended.

The final processing preceding DAC up-conversion to RF and the power amplifier is to
apply a pulse shaping filter on the data to smooth transitions between symbols. The

 WLAN Packet Structure

1-19

standard provides an example pulse shaping function but does not specifically require
one.

High Throughput Signal Field

The high throughput signal (HT-SIG) field is located between the L-SIG field and HT-STF
and is part of the HT-mixed format preamble. It is composed of two symbols, HT-SIG1 and
HT-SIG2.

HT-SIG carries information used to decode the HT packet, including the MCS, packet
length, FEC coding type, guard interval, number of extension spatial streams, and
whether there is payload aggregation. The HT-SIG symbols are also used for auto-
detection between HT-mixed format and legacy OFDM packets.

1 Tutorials

1-20

Refer to IEEE Std 802.11-2012, Section 20.3.9.4.3 for a detailed description of the HT-SIG
field.

High Throughput Short Training Field

The high throughput short training field (HT-STF) is located between the HT-SIG and HT-
LTF fields of an HT-mixed packet. The HT-STF is 4 μs in length and is used to improve
automatic gain control estimation for a MIMO system. For a 20 MHz transmission, the
frequency sequence used to construct the HT-STF is identical to that of the L-STF. For a
40 MHz transmission, the upper subcarriers of the HT-STF are constructed from a
frequency-shifted and phase-rotated version of the L-STF.

 WLAN Packet Structure

1-21

High Throughput Long Training Fields

The high throughput long training field (HT-LTF) is located between the HT-STF and data
field of an HT-mixed packet.

As described in IEEE Std 802.11-2012, Section 20.3.9.4.6, the receiver can use the HT-
LTF to estimate the MIMO channel between the set of QAM mapper outputs (or, if STBC
is applied, the STBC encoder outputs) and the receive chains. The HT-LTF portion has one
or two parts. The first part consists of one, two, or four HT-LTFs that are necessary for
demodulation of the HT-Data portion of the PPDU. These HT-LTFs are referred to as HT-
DLTFs. The optional second part consists of zero, one, two, or four HT-LTFs that can be
used to sound extra spatial dimensions of the MIMO channel not utilized by the HT-Data
portion of the PPDU. These HT-LTFs are referred to as HT-ELTFs. Each HT long training
symbol is 4 μs. The number of space-time streams and the number of extension streams
determines the number of HT-LTF symbols transmitted.

Tables 20-12, 20-13 and 20-14 from IEEE Std 802.11-2012 are reproduced here.

1 Tutorials

1-22

NSTS Determination NHTDLTF Determination NHTELTF Determination
Table 20-12 defines the
number of space-time
streams (NSTS) based on the
number of spatial streams
(NSS) from the MCS and the
STBC field.

Table 20-13 defines the
number of HT-DLTFs
required for the NSTS.

Table 20-14 defines the
number of HT-ELTFs
required for the number of
extension spatial streams
(NESS). NESS is defined in HT-
SIG2.

NSS
from
MCS

STBC
field

NSTS

1 0 1
1 1 2
2 0 2
2 1 3
2 2 4
3 0 3
3 1 4
4 0 4

NSTS NHTDLTF
1 1
2 2
3 4
4 4

NESS NHTELTF
0 0
1 1
2 2
3 4

Additional constraints include:

• NHTLTF = NHTDLTF + NHTELTF ≤ 5.
• NSTS + NESS ≤ 4.

• When NSTS = 3, NESS cannot exceed one.
• If NESS = 1 when NSTS = 3 then NHTLTF = 5.

HT Data Field

The high throughput data field (HT-Data) follows the last HT-LTF of an HT-mixed packet.

 WLAN Packet Structure

1-23

The high throughput data field is used to transmit one or more frames from the MAC
layer and consists of four subfields.

• Service field — Contains 16 zeros to initialize the data scrambler.
• PSDU — Variable-length field containing the PLCP service data unit (PSDU). In

802.11, the PSDU can consist of an aggregate of several MAC service data units.
• Tail — Tail bits required to terminate a convolutional code. The field uses six zeros for

each encoding stream.
• Pad Bits — Variable-length field required to ensure that the HT-Data field consists of

an integer number of symbols.

Very High Throughput SIG-A Field

The very high throughput signal A (VHT-SIG-A) field contains information required to
interpret VHT format packets. Similar to the non-HT signal (L-SIG) field for the non-HT
OFDM format, this field stores the actual rate value, channel coding, guard interval,
MIMO scheme, and other configuration details for the VHT format packet. Unlike the HT-
SIG field, this field does not store the packet length information. Packet length
information is derived from L-SIG and is captured in the VHT-SIG-B field for the VHT
format.

The VHT-SIG-A field consists of two symbols: VHT-SIG-A1 and VHT-SIG-A2. These symbols
are located between the L-SIG and the VHT-STF portion of the VHT format PPDU.

1 Tutorials

1-24

The VHT-SIG-A field is defined in IEEE Std 802.11ac-2013, Section 22.3.8.3.3.

The VHT-SIG-A field includes these components. The bit field structures for VHT-SIG-A1
and VHT-SIG-A2 vary for single user or multiuser transmissions.

• BW — A two-bit field that indicates 0 for 20 MHz, 1 for 40 MHz, 2 for 80 MHz, or 3 for
160 MHz.

• STBC — A bit that indicates the presence of space-time block coding.

 WLAN Packet Structure

1-25

• Group ID — A six-bit field that indicates the group and user position assigned to a
STA.

• NSTS — A three-bit field for a single user or 4 three-bit fields for a multiuser scenario,
that indicates the number of space-time streams per user.

• Partial AID — An identifier that combines the association ID and the BSSID.
• TXOP_PS_NOT_ALLOWED — An indicator bit that shows if client devices are allowed

to enter dose state. This bit is set to false when the VHT-SIG-A structure is populated,
indicating that the client device is allowed to enter dose state.

• Short GI — A bit that indicates use of the 400 ns guard interval.
• Short GI NSYM Disambiguation — A bit that indicates if an extra symbol is

required when the short GI is used.
• SU/MU[0] Coding — A bit field that indicates if convolutional or LDPC coding is used

for a single user or for user MU[0] in a multiuser scenario.
• LDPC Extra OFDM Symbol — A bit that indicates if an extra OFDM symbol is

required to transmit the data field.
• MCS — A four-bit field.

• For a single user scenario, it indicates the modulation and coding scheme used.
• For a multiuser scenario, it indicates use of convolutional or LDPC coding and the

MCS setting is conveyed in the VHT-SIG-B field.
• Beamformed — An indicator bit set to 1 when a beamforming matrix is applied to the

transmission.
• CRC — An eight-bit field used to detect errors in the VHT-SIG-A transmission.
• Tail — A six-bit field used to terminate the convolutional code.

Very High Throughput Short Training Field

The very high throughput short training field (VHT-STF) is a single OFDM symbol (4 μs in
length) that is used to improve automatic gain control estimation in a MIMO
transmission. It is located between the VHT-SIG-A and VHT-LTF portions of the VHT
packet.

1 Tutorials

1-26

The frequency domain sequence used to construct the VHT-STF for a 20 MHz
transmission is identical to the L-STF sequence. Duplicate L-STF sequences are frequency
shifted and phase rotated to support VHT transmissions for the 40 MHz, 80 MHz, and 160
MHz channel bandwidths. As such, the L-STF and HT-STF are subsets of the VHT-STF.

The VHT-STF is defined in IEEE Std 802.11ac-2013, Section 22.3.8.3.4.

Very High Throughput Long Training Fields

The very high throughput long training field (VHT-LTF) is located between the VHT-STF
and VHT-SIG-B portion of the VHT packet.

It is used for MIMO channel estimation and pilot subcarrier tracking. The VHT-LTF
includes one VHT long training symbol for each spatial stream indicated by the selected
MCS. Each symbol is 4 μs long. A maximum of eight symbols are permitted in the VHT-
LTF.

The VHT-LTF is defined in IEEE Std 802.11ac-2013, Section 22.3.8.3.5.

Very High Throughput SIG-B Field

The very high throughput signal B field (VHT-SIG-B) is used for multiuser scenario to set
up the data rate and to fine-tune MIMO reception. It is modulated using MCS 0 and is
transmitted in a single OFDM symbol.

 WLAN Packet Structure

1-27

The VHT-SIG-B field consists of a single OFDM symbol located between the VHT-LTF and
the data portion of the VHT format PPDU.

The very high throughput signal B (VHT-SIG-B) field contains the actual rate and A-MPDU
length value per user. The VHT-SIG-B is defined in IEEE Std 802.11ac-2013, Section
22.3.8.3.6, and Table 22–14. The number of bits in the VHT-SIG-B field varies with the
channel bandwidth and the assignment depends on whether single user or multiuser
scenario in allocated. For single user configurations, the same information is available in
the L-SIG field but the VHT-SIG-B field is included for continuity purposes.

1 Tutorials

1-28

Field VHT MU PPDU Allocation (bits) VHT SU PPDU Allocation (bits) Descript
ion

 20 MHz 40 MHz 80 MHz,
160 MHz

20 MHz 40 MHz 80 MHz,
160 MHz

VHT-SIG-
B

B0-15 (16) B0-16 (17) B0-18 (19) B0-16 (17) B0-18 (19) B0-20 (21) A
variable-
length
field that
indicates
the size
of the
data
payload
in four-
byte
units.
The
length of
the field
depends
on the
channel
bandwidt
h.

VHT-MCS B16-19 (4) B17-20 (4) B19-22 (4) N/A N/A N/A A four-bit
field that
is
included
for
multiuser
scenarios
only.

Reserved N/A N/A N/A B17–19
(3)

B19-20 (2) B21-22 (2) All ones

 WLAN Packet Structure

1-29

Field VHT MU PPDU Allocation (bits) VHT SU PPDU Allocation (bits) Descript
ion

 20 MHz 40 MHz 80 MHz,
160 MHz

20 MHz 40 MHz 80 MHz,
160 MHz

Tail B20-25 (6) B21-26 (6) B23-28 (6) B20-25 (6) B21-26 (6) B23-28 (6) Six zero-
bits used
to
terminate
the
convoluti
onal
code.

Total #
bits

26 27 29 26 27 29

Bit field
repetitio
n

1 2 4

For 160
MHz, the
80 MHz
channel is
repeated
twice.

1 2 4

For 160
MHz, the
80 MHz
channel is
repeated
twice.

For a null data packet (NDP), the VHT-SIG-B bits are set according to IEEE Std
802.11ac-2013, Table 22-15.

VHT Data Field

The very high throughput data (VHT data) field is used to transmit one or more frames
from the MAC layer. It follows the VHT-SIG-B field in the packet structure for the VHT
format PPDUs.

1 Tutorials

1-30

The VHT data field is defined in IEEE Std 802.11ac-2013, Section 22.3.10. It is composed
of four subfields.

• Service field — Contains a seven-bit scrambler initialization state, one bit reserved
for future considerations, and eight bits for the VHT-SIG-B CRC field.

• PSDU — Variable-length field containing the PLCP service data unit. In 802.11, the
PSDU can consist of an aggregate of several MAC service data units.

• PHY Pad — Variable number of bits passed to the transmitter to create a complete
OFDM symbol.

• Tail — Bits used to terminate a convolutional code. Tail bits are not needed when
LDPC is used.

References
[1] IEEE 802.11™: Wireless LANs. http://standards.ieee.org/about/get/802/802.11.html

[2] IEEE Std 802.11™-2016 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and

 WLAN Packet Structure

1-31

metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

[3] IEEE Std 802.11™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

[4] IEEE Std 802.11ac™-2013 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 4: Enhancements for Very High Throughput for Operation in Bands
below 6 GHz.

[5] IEEE Std 802.11ad™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band.

[6] IEEE Std P802.11ax™/D2.0 Draft Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 6: Enhancements for High Efficiency WLAN.

[7] Perahia, E., and R. Stacey. Next Generation Wireless LANs: 802.11n and 802.11ac.
2nd Edition. United Kingdom: Cambridge University Press, 2013.

See Also
“Waveform Generation” | “What Is WLAN?” | “Mapping 802.11 Standards to WLAN
Toolbox Configuration Objects” on page 1-43 | “Multiuser HE Transmission” on page 1-
33

1 Tutorials

1-32

Multiuser HE Transmission
In this section...
“Transmission Mode Options” on page 1-33
“Allocation Index” on page 1-34

Transmission Mode Options
The options for high-efficiency multiuser (HE MU) transmissions are:

• Orthogonal frequency-division multiple access (OFDMA)
• Full-band multiuser multiple-input/multiple-output (MU-MIMO)
• Mixed OFDMA and MU-MIMO

To choose a transmission mode, you must enable or disable SIGB compression by
specifying the state of the SIGB compression bit in the HE-SIG-A field.

• For a 20 MHz transmission, specify the SIGB compression bit directly by setting the
SIGBCompression property of the wlanHEMUConfig object.

• To enable SIGB compression, set the SIGBCompression property to 1 (true).
• To disable SIGB compression, set the SIGBCompression property to 0 (false).

• For a 40, 80, or 160 MHz transmission, enable or disable SIGB compression by setting
the AllocationIndex property of the wlanHEMUConfig object.

When SIGB compression is enabled, the transmission is full-bandwidth MU-MIMO. The
HE-SIG-B field contains no common field, and the resource unit (RU) allocation in the
user fields adheres to a standard-specified pattern. Because there is no common field in
this case, no allocation index is transmitted. The number of users is determined by
decoding the HE-SIG-A field.

When SIGB compression is disabled:

• The transmission is either OFDMA or mixed OFDMA and MU-MIMO, depending on the
AllocationIndex property of the HE MU configuration object.

• The HE-SIG-B common field includes RU allocation subfields to specify the RU
assignment and the number of users per RU for each 20 MHz bandwidth segment.

 Multiuser HE Transmission

1-33

The “802.11ax Parameterization for Waveform Generation and Simulation” example
introduces the concepts associated with HE transmission modes, RU allocation, and
parameterization.

The “802.11ax Signal Recovery with Preamble Decoding” example demonstrates the
required steps to detect and decode an HE MU transmission.

Allocation Index
When creating a wlanHEMUConfig object, you must specify the value of the
AllocationIndex property. Once the object is created, the AllocationIndex property
is read-only.

The AllocationIndex property defines the RU allocation index or a set of RU allocation
indices.

• Specify a single allocation index using one integer in either of these forms.

• An integer scalar
• An 8-bit binary sequence specified as a string or character vector

• Specify multiple allocation indices using two, four, or eight integer values in any of
these forms.

• A vector of integers
• An 8-bit binary sequences specified as a string array
• An 8-bit binary sequences specified as a cell array of character vectors

An RU is a group of 26, 52, 106, 242, 484, 996, or 2×996 subcarriers defining an
allocation unit in time and frequency.

1 Tutorials

1-34

The values specified in the AllocationIndex property correspond to the 8-bit indices
for each 20 MHz subchannel in the first column of Table 28-24 in [1]. The allocation
indices define the number of RUs, RU sizes, and number of users assigned to each RU.
When SIGB compression is enabled, the number of users is determined by decoding the
HE-SIG-A field. When SIGB compression is disabled, the number of users is determined
by decoding the HE-SIG-B common field.

When SIGB compression is enabled, the HE-SIG-B field contains only the user field.

When SIGB compression is disabled, the HE-SIG-B field includes both the common and
user fields. The common field carries the RU Allocation subfields in one or two content
channels. Depending on the PPDU bandwidth, the common field can contain multiple RU
Allocation subfields. For a discussion of the frequency-domain mapping of channel
contents into the common field, see Section 28.3.10.8.3 of [1].

This figure shows the structure of the HE-SIG-B field when SIGB compression is disabled.

 Multiuser HE Transmission

1-35

The format of the common field is defined in Table 28-23 of [1]. The RU Allocation subfield
in the common field of HE-SIG-B consists of 8 bits that indicate this information for each
20 MHz PPDU bandwidth.

• RU assignment in the frequency domain, which determines the size of the RUs and
their placement in the frequency domain.

• Number of user fields in a 20 MHz band within the HE-SIG-B content channel, which
determines the number of users multiplexed in the RUs. For RUs of size greater than
or equal to 106 tones, which support MU-MIMO, the RU Allocation subfield indicates
the number of users multiplexed using MU-MIMO. The HE-SIG-B field consists of N
RU Allocation subfields, where:

• N = 1 for 20 MHz and 40 MHz HE MU PPDUs
• N = 2 for 80 MHz HE MU PPDUs
• N = 4 for 160 MHz and 80+80 MHz HE MU PPDUs

This table lists the allocation indices and corresponding RU assignments for 20 MHz
subchannels and RUs with at most 242 tones. The table shows the number of tones per
RU and the number of users assigned for each allocation index.

1 Tutorials

1-36

This table lists the allocation indices and corresponding RU assignments for subchannels
greater than 20 MHz and RUs of more than 242 tones.

 Multiuser HE Transmission

1-37

The format of the user field for non-MU-MIMO and MU-MIMO allocations are defined in
Tables 28-25 and 28-26, of [1], respectively.

This table shows allocation index options required to specify transmission type for all
channel bandwidths.

Transmission
Type

20 MHz
Transmission

40 MHz
Transmission

80 MHz
Transmission

160 MHz
Transmission

Full-bandwidth
MU-MIMO

wlanHEMUConfi
g(a,'SIGBComp
ression', 1)

Specify a as an
integer in the
interval [192,
199].

wlanHEMUConfi
g(a)

Specify a as an
integer in the
interval [200,
207].

wlanHEMUConfi
g(a)

Specify a as an
integer in the
interval [208,
215].

wlanHEMUConfi
g(a)

Specify a as an
integer in the
interval [216,
223].

The wlanHEMUConfig object sets the
SIGBCompression property to 1 (true), and splits
users between the two content channels.

1 Tutorials

1-38

Transmission
Type

20 MHz
Transmission

40 MHz
Transmission

80 MHz
Transmission

160 MHz
Transmission

Full-bandwidth
MU-MIMO

wlanHEMUConfi
g(a,'SIGBComp
ression',0)

Specify a as an
integer in the
interval [192,
199].

wlanHEMUConfi
g([x 114])

Specify a as an
integer in the
interval [200,
207].

wlanHEMUConfi
g([a 115 115
115])

wlanHEMUConfi
g([115 115 a
115])

wlanHEMUConfi
g([a 115 b
115])

Specify a and b
as integers in
the interval
[208, 215].

wlanHEMUConfi
g([a 115 115
115 115 115
115 115])

wlanHEMUConfi
g([a 115 b
115 c 115 d
115])

wlanHEMUConfi
g([115 115
115 115 a 115
b 115])

wlanHEMUConfi
g([115 115
115 115 115
115 a 115])

wlanHEMUConfi
g([115 115 a
115 115 115 b
115])

Specify a, b, c,
and d as
integers in the
interval [216,
223].

The wlanHEMUConfig object sets the
SIGBCompression property to 0 (false). All users
are in content channel 1.

 Multiuser HE Transmission

1-39

Transmission
Type

20 MHz
Transmission

40 MHz
Transmission

80 MHz
Transmission

160 MHz
Transmission

Full-bandwidth
MU-MIMO

wlanHEMUConfi
g(a,'SIGBComp
ression',0)

Specify a as an
integer in the
interval [192,
199].

wlanHEMUConfi
g([114 a])

Specify a as an
integer in the
interval [200,
207].

wlanHEMUConfi
g([115 a 115
115])

wlanHEMUConfi
g([115 115
115 a])

wlanHEMUConfi
g([115 a 115
b])

Specify a and b
as integers in
the interval
[208, 215].

wlanHEMUConfi
g([115 a 115
115 115 115
115 115])

wlanHEMUConfi
g([115 a 115
b 115 c 115
d])

wlanHEMUConfi
g([115 115
115 115 115 a
115 b])

wlanHEMUConfi
g([115 115
115 115 115
115 115 a])

wlanHEMUConfi
g([115 115
115 a 115 115
115 b])

Specify a, b, c,
and d as
integers in the
interval [216,
223].

The wlanHEMUConfig object sets the
SIGBCompression property to 0 (false). All users
are in content channel 2.

1 Tutorials

1-40

Transmission
Type

20 MHz
Transmission

40 MHz
Transmission

80 MHz
Transmission

160 MHz
Transmission

Full bandwidth
MU-MIMO

wlanHEMUConfi
g(a,'SIGBComp
ression',0)

Specify a as an
integer in the
interval [192,
199].

wlanHEMUConfi
g([a b])

Specify a and b
as integers in
the interval
[200, 207].

wlanHEMUConfi
g([a b c d])

Specify a, b, c,
and d as
integers in the
interval [208,
215].

wlanHEMUConfi
g([a b c d e
f g h])

Specify a, b, c,
d, e, f, g, and h
as integers in
the interval
[216, 223].

The wlanHEMUConfig object sets the
SIGBCompression property to 0 (false). Users are
in their respective content channels. For example, in
an 80 MHz transmission, the users represented by
allocation indices a and c are in content channel 1,
and the users represented by allocation indices b
and d are in content channel 2.

Mixed OFDMA
and MU-MIMO

wlanHEMUConfi
g(a,'SIGBComp
ression',0)

Specify a as an
integer in the
interval [0, 192].

wlanHEMUConfi
g([a b])

Specify a and b
as integers in
the interval [0,
199].

wlanHEMUConfi
g([a b c d])

Specify a, b, c,
and d as
integers in the
interval [0, 207].

wlanHEMUConfi
g([a b c d e
f g h])

Specify a, b, c,
d, e, f, g, and h
as integers in
the interval [0,
215].

20 MHz
transmissions
have only one
content channel.

The wlanHEMUConfig object sets the
SIGBCompression property to 0 (false). Users are
in their respective content channels. For example, in
the 80 MHz transmission case, the users
represented by allocation indices a and c are in
content channel 1, and the users represented by
allocation indices b and d are in content channel 2.

 Multiuser HE Transmission

1-41

References
[1] IEEE Std P802.11ax/D3.1 Draft Standard for Information technology —

Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 6: Enhancements for High Efficiency WLAN.

See Also

More About
• “WLAN Packet Structure” on page 1-4

1 Tutorials

1-42

Mapping 802.11 Standards to WLAN Toolbox
Configuration Objects

The table shows the mapping from 802.11 versions to the associated packet format and
WLAN Toolbox configuration object.

802.11 Version Transmission Packet
Format

Toolbox Configuration
Object

802.11 b/a/g/j/p non-HT wlanNonHTConfig
802.11n (Wi-Fi 4) HT wlanHTConfig
802.11ac (Wi-Fi 5) VHT wlanVHTConfig
802.11ah S1G wlanS1GConfig
802.11ad DMG wlanDMGConfig
802.11ax (Wi-Fi 6) HE wlanHESUConfig

wlanHEMUConfig

WLAN Toolbox configuration objects define the properties that enable creation of PPDUs
and waveforms for the specified 802.11 transmission format.

See Also
“WLAN Parameterization” on page 1-2 | “WLAN Packet Structure” on page 1-4 | “Create
Configuration Objects” | “Waveform Generation” | “Multiuser HE Transmission” on page
1-33

 Mapping 802.11 Standards to WLAN Toolbox Configuration Objects

1-43

What is C Code Generation from MATLAB?
You can use WLAN Toolbox together with MATLAB® Coder™ to:

• Create a MEX file to speed up your MATLAB application.
• Generate ANSI®/ISO® compliant C/C++ source code that implements your MATLAB

functions and models.
• Generate a standalone executable that runs independently of MATLAB on your

computer or another platform.

In general, the code you generate using the toolbox is portable ANSI C code. In order to
use code generation, you need a MATLAB Coder license. For more information, see
“Getting Started with MATLAB Coder” (MATLAB Coder).

Using MATLAB Coder
Creating a MATLAB Coder MEX file can substantially accelerate your MATLAB code. It is
also a convenient first step in a workflow that ultimately leads to completely standalone
code. When you create a MEX file, it runs in the MATLAB environment. Its inputs and
outputs are available for inspection just like any other MATLAB variable. You can then use
MATLAB tools for visualization, verification, and analysis.

The simplest way to generate MEX files from your MATLAB code is by using the codegen
function at the command line. For example, if you have an existing function,
myfunction.m, you can type the commands at the command line to compile and run the
MEX function. codegen adds a platform-specific extension to this name. In this case, the
"mex" suffix is added.

codegen myfunction.m
myfunction_mex;

Within your code, you can run specific commands either as generated C code or by using
the MATLAB engine. In cases where an isolated command does not yet have code
generation support, you can use the coder.extrinsic command to embed the
command in your code. This means that the generated code reenters the MATLAB
environment when it needs to run that particular command. This is also useful if you want
to embed commands that cannot generate code (such as plotting functions).

To generate standalone executables that run independently of the MATLAB environment,
create a MATLAB Coder project inside the MATLAB Coder Integrated Development

1 Tutorials

1-44

Environment (IDE). Alternatively, you can call the codegen command in the command
line environment with appropriate configuration parameters. A standalone executable
requires you to write your own main.c or main.cpp function. See “Generating
Standalone C/C++ Executables from MATLAB Code” (MATLAB Coder) for more
information.

C/C++ Compiler Setup
Before using codegen to compile your code, you must set up your C/C++ compiler. For
32-bit Windows platforms, MathWorks® supplies a default compiler with MATLAB. If your
installation does not include a default compiler, you can supply your own compiler. For the
current list of supported compilers, see Supported and Compatible Compilers on the
MathWorks website. Install a compiler that is suitable for your platform, then read
“Setting Up the C or C++ Compiler” (MATLAB Coder). After installation, at the MATLAB
command prompt, run mex -setup. You can then use the codegen function to compile
your code.

Functions and System Objects That Support Code Generation
All WLAN Toolbox functions and System objects support code generation.

See Also
Functions
codegen | mex

More About
• “Code Generation Workflow” (MATLAB Coder)
• Generate C Code from MATLAB Code Video

 See Also

1-45

https://www.mathworks.com/support/compilers.html
https://www.mathworks.com/videos/generate-c-code-from-matlab-code-108233.html

Functions and System Objects Supported for MATLAB
Coder

You can generate efficient C/C++ code for all WLAN Toolbox functions and System
objects by using the MATLAB Coder product (requires a license).

An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

comm.Constellatio
nDiagram*

Display constellation diagram for input signals

comm.ErrorRate* Compute bit or symbol error rate of input data
comm.EVM* Measure error vector magnitude
comm.PhaseFrequen
cyOffset*

Apply phase and frequency offsets to input signal

displayIEs Display the list of information elements (IEs)
dsp.ArrayPlot* Display vectors or arrays
dsp.SpectrumAnaly
zer*

Display frequency spectrum of time-domain signals

dsp.TimeScope* Time domain signal display and measurement
getPSDULength Return HE format PSDU length
getSIGBLength Return information relevant to HE-SIG-B field length
info Return characteristic information about TGay multipath fading channel
interpretHESIGABi
ts

Update recovery configuration object with HE-SIG-A bits

packetFormat Return WLAN packet format
ruInfo Return HE format resource unit allocation information
showEnvironment Display channel environment with D-Rays from ray tracing
wlanAMPDUDeaggreg
ate

Deaggregate A-MPDU and extract MPDUs

wlanAPEPLength Calculate APEP length in octets
wlanBCCDecode Convolutionally decode input data

1 Tutorials

1-46

wlanBCCDeinterlea
ve

Deinterleave binary convolutionally interleaved input

wlanBCCEncode Convolutionally encode binary data
wlanBCCInterleave Interleave binary convolutionally encoded input
wlanClosestRefere
nceSymbol

Find closest constellation points

wlanCoarseCFOEsti
mate

Coarse estimate of carrier frequency offset

wlanConstellation
Demap

Constellation demapping

wlanConstellation
Map

Constellation mapping

wlanDMGConfig Create DMG-format configuration object
wlanDMGDataBitRec
over

Recover data bits from DMG data field

wlanDMGHeaderBitR
ecover

Recover header bits from DMG header field

wlanDMGOFDMDemodu
late

Demodulate fields of DMG waveform

wlanDMGOFDMInfo Get OFDM information for DMG transmission
wlanFieldIndices Generate PPDU field indices
wlanFineCFOEstima
te

Fine estimate of carrier frequency offset

wlanFormatDetect Detect packet format
wlanGolaySequence Generate Golay sequence
wlanHEDataBitReco
ver

Recover data bits from HE-Data field

wlanHEDemodulate Demodulate fields of HE waveform
wlanHEMUConfig Create multiuser high-efficiency-format configuration object
wlanHEOFDMInfo Get OFDM information for HE transmission
wlanHERecoveryCon
fig

Create HE recovery configuration object

 Functions and System Objects Supported for MATLAB Coder

1-47

wlanHESIGABitReco
ver

Recover information bits in HE-SIG-A field

wlanHESIGBCommonB
itRecover

Recover common field bits in HE-SIG-B field

wlanHESIGBUserBit
Recover

Recover user field bits in HE-SIG-B field

wlanHESUConfig Create single-user high-efficiency-format configuration object
wlanHTConfig Create HT-format configuration object
wlanHTData Generate HT-Data field waveform
wlanHTDataRecover Recover HT data
wlanHTLTF Generate HT-LTF waveform
wlanHTLTFChannelE
stimate

Channel estimation using HT-LTF

wlanHTLTFDemodula
te

Demodulate HT-LTF waveform

wlanHTOFDMInfo Return OFDM information for HT transmission
wlanHTSIG Generate HT-SIG waveform
wlanHTSIGRecover Recover HT-SIG information bits
wlanHTSTF Generate HT-STF waveform
wlanLLTF Generate L-LTF waveform
wlanLLTFChannelEs
timate

Channel estimation using L-LTF

wlanLLTFDemodulat
e

Demodulate L-LTF waveform

wlanLSIG Generate L-SIG waveform
wlanLSIGBitRecove
r

Recover information bits in L-SIG field

wlanLSIGRecover Recover L-SIG information bits
wlanLSTF Generate L-STF waveform
wlanMACFrame Generate WLAN MAC frame (MPDU or A-MPDU)

1 Tutorials

1-48

wlanMACFrameConfi
g

Create WLAN MAC frame configuration object

wlanMACManagement
Config

Create WLAN MAC management frame-body configuration object

wlanMPDUDecode Decode MPDU
wlanMSDULengths Calculate MSDU lengths
wlanNonHTConfig Create non-HT-format configuration object
wlanNonHTData Generate non-HT-Data field waveform
wlanNonHTDataReco
ver

Recover non-HT data

wlanNonHTOFDMInfo Get OFDM information for non-HT transmission
wlanPacketDetect OFDM packet detection using L-STF
wlanPSDULength Calculate PSDU length in octets
wlanRecoveryConfi
g

Create data recovery configuration object

wlanReferenceSymb
ols

Find reference symbols of constellation diagram

wlanS1GConfig Create S1G-format configuration object
wlanS1GDemodulate Demodulate fields of S1G waveform
wlanS1GOFDMInfo Get OFDM Information for S1G transmission
wlanScramble Scramble and descramble binary input sequence
wlanSegmentDepars
eBits

Segment-deparse data bits

wlanSegmentDepars
eSymbols

Segment-deparse data subcarriers

wlanSegmentParseB
its

Segment-parse data bits

wlanSegmentParseS
ymbols

Segment-parse data subcarriers

wlanStreamDeparse Stream-deparse binary input
wlanStreamParse Stream-parse binary input

 Functions and System Objects Supported for MATLAB Coder

1-49

wlanSymbolTimingE
stimate

Fine symbol timing estimate using L-LTF

wlanTGacChannel* Filter signal through 802.11ac multipath fading channel
wlanTGahChannel* Filter signal through 802.11ah multipath fading channel
wlanTGaxChannel* Filter signal through an 802.11ax multipath fading channel
wlanTGayChannel* Filter signal through 802.11ay™ multipath fading channel
wlanTGnChannel* Filter signal through 802.11n multipath fading channel
wlanURAConfig Create antenna array configuration object for 802.11ay channel model
wlanVHTConfig Create VHT-format configuration object
wlanVHTData Generate VHT-Data field
wlanVHTDataRecove
r

Recover VHT data

wlanVHTLTF Generate VHT-LTF waveform
wlanVHTLTFChannel
Estimate

Channel estimation using VHT-LTF

wlanVHTLTFDemodul
ate

Demodulate VHT-LTF waveform

wlanVHTOFDMInfo Get OFDM information for VHT transmission
wlanVHTSIGA Generate VHT-SIG-A waveform
wlanVHTSIGARecove
r

Recover VHT-SIG-A information bits

wlanVHTSIGB Generate VHT-SIG-B waveform
wlanVHTSIGBRecove
r

Recover VHT-SIG-B information bits

wlanVHTSTF Generate VHT-STF waveform
wlanWaveformGener
ator

Generate WLAN waveform

1 Tutorials

1-50

See Also

More About
• “What is C Code Generation from MATLAB?” on page 1-44

 See Also

1-51

Build HE PPDU

802.11ax Parameterization for Waveform Generation and
Simulation
This example shows how to parameterize and generate different IEEE® 802.11ax™ high
efficiency (HE) format packets.

Introduction

IEEE P802.11ax/D3.1 [1] specifies four high efficiency (HE) packet formats:

1 Single user
2 Extended range single user
3 Multi user
4 Trigger-based

This example shows how packets can be generated for these different formats, and
demonstrates some of the key features of the draft standard [1].

HE Single User Format

An HE single user (SU) packet is a full-band transmission to a single user. The transmit
parameters for the HE SU format are configured using a wlanHESUConfig object. The
wlanHESUConfig object can be configured to operate in extended range mode. To enable
or disable this mode, set the ExtendedRange property to true or false. In this example
we create a configuration for an HE SU transmission and configure transmission
properties.

cfgSU = wlanHESUConfig;
cfgSU.ExtendedRange = false; % Do not use extended range format
cfgSU.ChannelBandwidth = 'CBW20'; % Channel bandwidth
cfgSU.APEPLength = 1000; % Payload length in bytes
cfgSU.MCS = 0; % Modulation and coding scheme
cfgSU.ChannelCoding = 'LDPC'; % Channel coding
cfgSU.NumSpaceTimeStreams = 1; % Number of space-time streams
cfgSU.NumTransmitAntennas = 1; % Number of transmit antennas

A single user packet can be generated with the waveform generator,
wlanWaveformGenerator. The getPSDULength() method returns the required PSDU

1 Tutorials

1-52

length given the transmission configuration. This length is used to create a random PSDU
for transmission.

psdu = randi([0 1],getPSDULength(cfgSU)*8,1,'int8'); % Random PSDU
txSUWaveform = wlanWaveformGenerator(psdu,cfgSU); % Create packet

HE Extended Range Single User Format

An extended range single user packet has the same fields as the standard single user
format, but the powers of some fields are boosted, and some fields are repeated to
improve performance at low SNRs. An extended range packet can be configured using a
wlanHESUConfig object with ChannelBandwidth set to 'CBW20' and ExtendedRange
set to true. An extended range packet has an option to only transmit in the upper 106-
tone resource unit (RU) within the 20 MHz channel, or over the entire bandwidth. This
can be configured with the Upper106ToneRU property:

cfgExtSU = cfgSU;
cfgExtSU.ExtendedRange = true; % Enable extended range
cfgExtSU.Upper106ToneRU = true; % Use only upper 106-tone RU

% Generate a packet
psdu = randi([0 1],getPSDULength(cfgExtSU)*8,1,'int8'); % Random PSDU
txExtSUWaveform = wlanWaveformGenerator(psdu,cfgExtSU); % Create packet

If we look at the spectrum of the data portion we can see only the upper half of the
channel is used.

fs = wlanSampleRate(cfgExtSU); % Get baseband sample rate
spectrumAnalyzer = dsp.SpectrumAnalyzer;
spectrumAnalyzer.SampleRate = fs;
spectrumAnalyzer.Title = 'HE Extended Range SU with Active Upper 106-Tone RU';
ind = wlanFieldIndices(cfgExtSU);
spectrumAnalyzer(txExtSUWaveform(ind.HEData(1):ind.HEData(2),:));

 Build HE PPDU

1-53

If we compare the power of the L-STF and L-LTF fields we can see the extended range
transmission is boosted by 3 dB.

figure;
t = (0:(ind.LLTF(2)-1))/fs*1e6;
plot(t,20*log10(movmean(abs(txSUWaveform(1:ind.LLTF(2))),20)),'-b')
hold on;
plot(t,20*log10(movmean(abs(txExtSUWaveform(1:ind.LLTF(2))),20)),'-r')
grid on;
title('Power of L-STF and L-LTF (1 us Moving Average)');
xlabel('Time (us)');
ylabel('Power (dBW)');
legend('HE SU','HE Extended Range SU','Location','SouthWest');

1 Tutorials

1-54

HE Multi User Format - OFDMA

The HE multi-user (HE-MU) format can be configured for an OFDMA transmission, a MU-
MIMO transmission, or a combination of the two. This flexibility allows an HE-MU packet
to transmit to a single user over the whole band, multiple users over different parts of the
band (OFDMA), or multiple users over the same part of the band (MU-MIMO).

For an OFDMA transmission, the channel bandwidth is divided into resource units (RUs).
An RU is a group of subcarriers assigned to one or more users. An RU is defined by a size
(the number of subcarriers) and an index. The RU index specifies the location of the RU
within the channel. For example, in an 80 MHz transmission there are four possible 242-
tone RUs, one in each 20 MHz subchannel. RU# 242-1 (size 242, index 1) is the RU
occupying the lowest absolute frequency within the 80 MHz, and RU# 242-4 (size 242,

 Build HE PPDU

1-55

index 4) is the RU occupying the highest absolute frequency. The draft standard defines
possible sizes and location of RUs in Section 28.3.3.2 of [1].

The assignment of RUs in a transmission is defined by the allocation index. The allocation
index is defined in Table 28-24 of [1]. For each 20 MHz subchannel, an 8 bit index
describes the number and size of RUs, and the number of users transmitted on each RU.
The allocation index also determines which content channel is used to signal a user in HE-
SIG-B. The allocation indices within Table 28-24, and the corresponding RU assignments,
are provided in the table returned by the function heRUAllocationTable. The first 10
allocations within the table are shown below. For each allocation index, the 8 bit
allocation index, the number of users, number of RUs, RU indices, RU sizes, and number
of users per RU are displayed. A note is also provided about allocations which are
reserved, or serve a special purpose. The allocation table can also be viewed in the
Appendix.

allocationTable = heRUAllocationTable;
disp('First 10 entries in the allocation table: ')
disp(allocationTable(1:10,:));

First 10 entries in the allocation table:
 Allocation BitAllocation NumUsers NumRUs RUIndices RUSizes NumUsersPerRU Note
 __________ _____________ ________ ______ ____________ ____________ _____________ ____

 0 "00000000" 9 9 {1×9 double} {1×9 double} {1×9 double} ""
 1 "00000001" 8 8 {1×8 double} {1×8 double} {1×8 double} ""
 2 "00000010" 8 8 {1×8 double} {1×8 double} {1×8 double} ""
 3 "00000011" 7 7 {1×7 double} {1×7 double} {1×7 double} ""
 4 "00000100" 8 8 {1×8 double} {1×8 double} {1×8 double} ""
 5 "00000101" 7 7 {1×7 double} {1×7 double} {1×7 double} ""
 6 "00000110" 7 7 {1×7 double} {1×7 double} {1×7 double} ""
 7 "00000111" 6 6 {1×6 double} {1×6 double} {1×6 double} ""
 8 "00001000" 8 8 {1×8 double} {1×8 double} {1×8 double} ""
 9 "00001001" 7 7 {1×7 double} {1×7 double} {1×7 double} ""

A wlanHEMUConfig object is used to configure the transmission of an HE-MU packet. The
allocation index for each 20 MHz subchannel must be provided when creating an HE-MU
configuration object, wlanHEMUConfig. An integer between 0 and 223, corresponding to
the 8-bit number in Table 28-24 of [1], must be provided for each 20 MHz subchannel.

The allocation index can be provided as a decimal or 8-bit binary sequence. In this
example, a 20 MHz HE-MU configuration is created with 8 bit allocation index

1 Tutorials

1-56

"10000000". This is equivalent to the decimal allocation index 128. This configuration
specifies 3 RUs, each with one user.

allocationIndex = "10000000"; % 3 RUs, 1 user per RU
cfgMU = wlanHEMUConfig(allocationIndex);

The showAllocation method visualizes the occupied RUs and subcarriers for the
specified configuration. The colored blocks illustrate the occupied subcarriers in the pre-
HE and HE portions of the packet. White indicates subcarriers are unoccupied. The pre-
HE portion illustrates the occupied subcarriers in the fields preceding HE-STF. The HE
portion illustrates the occupied subcarriers in the HE-STF, HE-LTF and HE-Data field and
therefore shows the RU allocation. Clicking on an RU will display information about the
RU. The RU number corresponds to the i-th RU element of the cfgMU.RU property. The
size and index are the details of the RU. The RU index is the i-th possible RU of the
corresponding RU size within the channel bandwidth, for example Index 2 is the 2nd
possible 106-tone RU within the 20 MHz channel bandwidth. The user number
correspond to the i-th User element of the cfgMU.User property, and the user field in
HE-SIG-B. Note the middle RU (RU #2) is split across the DC subcarriers.

showAllocation(cfgMU);
axAlloc = gca; % Get axis handle for subsequent plotting

 Build HE PPDU

1-57

The ruInfo method provides details of the RUs in the configuration. In this case we can
see three users and three RUs.

allocInfo = ruInfo(cfgMU);
disp('Allocation info:')
disp(allocInfo)

Allocation info:
 NumUsers: 3
 NumRUs: 3
 RUIndices: [1 5 2]
 RUSizes: [106 26 106]
 NumUsersPerRU: [1 1 1]
 NumSpaceTimeStreamsPerRU: [1 1 1]

1 Tutorials

1-58

 PowerBoostFactorPerRU: [1 1 1]
 RUNumbers: [1 2 3]

The properties of cfgMU describe the transmission configuration. The cfgMU.RU and
cfgMU.User properties of cfgMU are cell arrays. Each element of the cell arrays contains
an object which configures an RU or a User. When the cfgMU object is created, the
elements of cfgMU.RU and cfgMU.User are configured to create the desired number of
RUs and users. Each element of cfgMU.RU is a wlanHEMURU object describing the
configuration of an RU. Similarly, each element of cfgMU.User is a wlanHEMUUser
object describing the configuration of a User. This object hierarchy is shown below:

In this example, three RUs are specified by the allocation index 128, therefore cfgMU.RU
is a cell array with three elements. The index and size of each RU are configured

 Build HE PPDU

1-59

according to the allocation index used to create cfgMU. After the object is created, each
RU can be configured to create the desired transmission configuration, by setting the
properties of the appropriate RU object. For example, the spatial mapping and power
boost factor can be configured per RU. The Size and Index properties of each RU are
fixed once the object is created, and therefore are read-only properties. Similarly, the
UserNumbers property is read-only and indicates which user is transmitted on the RU.
For this configuration the first RU is size 106, index 1.

disp('First RU configuration:')
disp(cfgMU.RU{1})

First RU configuration:
 wlanHEMURU with properties:

 PowerBoostFactor: 1
 SpatialMapping: 'Direct'

 Read-only properties:
 Size: 106
 Index: 1
 UserNumbers: 1

In this example, the allocation index specifies three users in the transmission, therefore
cfgMU.User contains three elements. The transmission properties of users can be
configured by modifying individual user objects, for example the MCS, APEP length and
channel coding scheme. The read-only RUNumber property indicates which RU is used to
transmit this user.

disp('First user configuration:')
disp(cfgMU.User{1})

First user configuration:
 wlanHEMUUser with properties:

 APEPLength: 100
 MCS: 0
 NumSpaceTimeStreams: 1
 DCM: 0
 ChannelCoding: 'LDPC'
 STAID: 0
 NominalPacketPadding: 0

 Read-only properties:

1 Tutorials

1-60

 RUNumber: 1

The number of users per RU, and mapping of users to RUs is determined by the allocation
index. The UserNumbers property of an RU object indicates which users (elements of the
cfgMU.User cell array) are transmitted on that RU. Similarly, the RUNumber property of
each User object, indicates which RU (element of the cfgMU.RU cell array) is used to
transmit the user:

This allows the properties of an RU associated with a User to be accessed easily:

ruNum = cfgMU.User{2}.RUNumber; % Get the RU number associated with user 2
disp(cfgMU.RU{ruNum}.SpatialMapping); % Display the spatial mapping

Direct

When an RU serves multiple users, in a MU-MIMO configuration, the UserNumbers
property can index multiple users:

 Build HE PPDU

1-61

Once the cfgMU object is created, transmission parameters can be set as demonstrated
below.

% Configure RU 1 and user 1
cfgMU.RU{1}.SpatialMapping = 'Direct';
cfgMU.User{1}.APEPLength = 1e3;
cfgMU.User{1}.MCS = 2;
cfgMU.User{1}.NumSpaceTimeStreams = 4;
cfgMU.User{1}.ChannelCoding = 'LDPC';

% Configure RU 2 and user 2
cfgMU.RU{2}.SpatialMapping = 'Fourier';
cfgMU.User{2}.APEPLength = 500;
cfgMU.User{2}.MCS = 3;
cfgMU.User{2}.NumSpaceTimeStreams = 2;
cfgMU.User{2}.ChannelCoding = 'LDPC';

% Configure RU 3 and user 3
cfgMU.RU{3}.SpatialMapping = 'Fourier';
cfgMU.User{3}.APEPLength = 100;
cfgMU.User{3}.MCS = 4;
cfgMU.User{3}.DCM = true;

1 Tutorials

1-62

cfgMU.User{3}.NumSpaceTimeStreams = 1;
cfgMU.User{3}.ChannelCoding = 'BCC';

Some transmission parameters are common for all users in the HE-MU transmission.

% Configure common parameters for all users
cfgMU.NumTransmitAntennas = 4;
cfgMU.SIGBMCS = 2;

To generate the HE-MU waveform, we first create a random PSDU for each user. A cell
array is used to store the PSDU for each user as the PSDU lengths differ. The
getPSDULength() method returns a vector with the required PSDU per user given the
configuration. The waveform generator is then used to create a packet.

psduLength = getPSDULength(cfgMU);
psdu = cell(1,allocInfo.NumUsers);
for i = 1:allocInfo.NumUsers
 psdu{i} = randi([0 1],psduLength(i)*8,1,'int8'); % Generate random PSDU
end

% Create MU packet
txMUWaveform = wlanWaveformGenerator(psdu,cfgMU);

To configure an OFDMA transmission with a channel bandwidth greater than 20 MHz, an
allocation index must be provided for each 20 MHz subchannel. For example, to configure
an 80 MHz OFDMA transmission, four allocation indices are required. In this example
four 242-tone RUs are configured. The allocation index 192 specifies one 242-tone RU
with a single user in a 20 MHz subchannel, therefore the allocation indices [192 192
192 192] are used to create four of these RUs, over 80 MHz:

% Display 192 allocation index properties in the table (the 193rd row)
disp('Allocation #192 table entry:')
disp(allocationTable(193,:))

% Create 80 MHz MU configuration, with four 242-tone RUs
cfgMU80MHz = wlanHEMUConfig([192 192 192 192]);

Allocation #192 table entry:
 Allocation BitAllocation NumUsers NumRUs RUIndices RUSizes NumUsersPerRU Note
 __________ _____________ ________ ______ _________ _______ _____________ ____

 192 "11000000" 1 1 {[1]} {[242]} {[1]} ""

 Build HE PPDU

1-63

When multiple 20 MHz subchannels are specified, the ChannelBandwidth property is
set to the appropriate value. For this configuration it is set to 'CBW80' as four 20 MHz
subchannels are specified. This is also visible in the allocation plot.

disp('Channel bandwidth for HE-MU allocation:')
disp(cfgMU80MHz.ChannelBandwidth)
showAllocation(cfgMU80MHz,axAlloc)

Channel bandwidth for HE-MU allocation:
CBW80

1 Tutorials

1-64

HE Multi User Format - MU-MIMO

An HE-MU packet can also transmit an RU to multiple users using MU-MIMO. For a full
band MU-MIMO allocation, the allocation indices between 192 and 199 configure a full-
band 20 MHz allocation (242-tone RU). The index within this range determines how many
users are configured. The allocation details can be viewed in the allocation table. Note the
NumUsers column in the table grows with index but the NumRUs is always 1. The
allocation table can also be viewed in the Appendix.

disp('Allocation #192-199 table entries:')
disp(allocationTable(193:200,:)) % Indices 192-199 (rows 193 to 200)

Allocation #192-199 table entries:
 Allocation BitAllocation NumUsers NumRUs RUIndices RUSizes NumUsersPerRU Note
 __________ _____________ ________ ______ _________ _______ _____________ ____

 192 "11000000" 1 1 {[1]} {[242]} {[1]} ""
 193 "11000001" 2 1 {[1]} {[242]} {[2]} ""
 194 "11000010" 3 1 {[1]} {[242]} {[3]} ""
 195 "11000011" 4 1 {[1]} {[242]} {[4]} ""
 196 "11000100" 5 1 {[1]} {[242]} {[5]} ""
 197 "11000101" 6 1 {[1]} {[242]} {[6]} ""
 198 "11000110" 7 1 {[1]} {[242]} {[7]} ""
 199 "11000111" 8 1 {[1]} {[242]} {[8]} ""

The allocation index 193 transmits a 20 MHz 242-tone RU to two users. In this example,
we will create a transmission with a random spatial mapping matrix which maps a single
space-time stream for each user, onto two transmit antennas.

% Configure 2 users in a 20 MHz channel
cfgMUMIMO = wlanHEMUConfig(193);

% Set the transmission properties of each user
cfgMUMIMO.User{1}.APEPLength = 100; % Bytes
cfgMUMIMO.User{1}.MCS = 2;
cfgMUMIMO.User{1}.ChannelCoding = 'LDPC';
cfgMUMIMO.User{1}.NumSpaceTimeStreams = 1;

cfgMUMIMO.User{2}.APEPLength = 1000; % Bytes
cfgMUMIMO.User{2}.MCS = 6;
cfgMUMIMO.User{2}.ChannelCoding = 'LDPC';
cfgMUMIMO.User{2}.NumSpaceTimeStreams = 1;

 Build HE PPDU

1-65

% Get the number of occupied subcarriers in the RU
ruIndex = 1; % Get the info for the first (and only) RU
ofdmInfo = wlanHEOFDMInfo('HE-Data',cfgMUMIMO,ruIndex);
numST = ofdmInfo.NumTones; % Number of occupied subcarriers

% Set the number of transmit antennas and generate a random spatial mapping
% matrix
numTx = 2;
allocInfo = ruInfo(cfgMUMIMO);
numSTS = allocInfo.NumSpaceTimeStreamsPerRU(ruIndex);
cfgMUMIMO.NumTransmitAntennas = numTx;
cfgMUMIMO.RU{ruIndex}.SpatialMapping = 'Custom';
cfgMUMIMO.RU{ruIndex}.SpatialMappingMatrix = rand(numST,numSTS,numTx);

% Create packet with a repeated bit sequence as the PSDU
txMUMIMOWaveform = wlanWaveformGenerator([1 0 1 0],cfgMUMIMO);

A full band MU-MIMO transmission with a channel bandwidth greater than 20 MHz is
created by providing a single RU allocation index within the range 200-223 when creating
the wlanHEMUConfig object. For these allocations HE-SIG-B compression is used.

The allocation indices between 200 and 207 configure a full-band MU-MIMO 40 MHz
allocation (484-tone RU). The index within this range determines how many users are
configured. The allocation details can be viewed in the allocation table. Note the
NumUsers column in the table grows with index but the NumRUs is always 1.

disp('Allocation #200-207 table entries:')
disp(allocationTable(201:208,:)) % Indices 200-207 (rows 201 to 208)

Allocation #200-207 table entries:
 Allocation BitAllocation NumUsers NumRUs RUIndices RUSizes NumUsersPerRU Note
 __________ _____________ ________ ______ _________ _______ _____________ ____

 200 "11001000" 1 1 {[1]} {[484]} {[1]} ""
 201 "11001001" 2 1 {[1]} {[484]} {[2]} ""
 202 "11001010" 3 1 {[1]} {[484]} {[3]} ""
 203 "11001011" 4 1 {[1]} {[484]} {[4]} ""
 204 "11001100" 5 1 {[1]} {[484]} {[5]} ""
 205 "11001101" 6 1 {[1]} {[484]} {[6]} ""
 206 "11001110" 7 1 {[1]} {[484]} {[7]} ""
 207 "11001111" 8 1 {[1]} {[484]} {[8]} ""

1 Tutorials

1-66

Similarly, the allocation indices between 208 and 215 configure a full-band MU-MIMO 80
MHz allocation (996-tone RU), and the allocation indices between 216 and 223 configure
a full-band MU-MIMO 160 MHz allocation (2x996-tone RU).

As an example, the allocation index 203 specifies a 484-tone RU with 4 users:

cfg484MU = wlanHEMUConfig(203);
showAllocation(cfg484MU,axAlloc)

HE Multi User Format - OFDMA with RU Sizes Greater Than 242 Subcarriers

For an HE-MU transmission with a channel bandwidth greater than 20 MHz, two HE-SIG-
B content channels are used to signal user configurations. These content channels are
duplicated over each 40 MHz subchannel for larger channel bandwidths, as described in

 Build HE PPDU

1-67

Section 28.3.10.8.3 of [1]. When an RU size greater than 242 is specified as part of an
OFDMA system, the users assigned to the RU can be signaled on either of the two HE-
SIG-B content channels. The allocation index provided when creating an
wlanHEMUConfig object controls which content channel each user is signaled on. The
allocation table in the Appendix shows the relevant allocation indices.

As an example, consider the following 80 MHz configuration which serves 7 users:

• One 484-tone RU (RU #1) with four users (users #1-4)
• One 242-tone RU (RU #2) with one user (user #5)
• Two 106-tone RUs (RU #3 and #4), each with one user (users #6 and #7)

To configure an 80 MHz OFDMA transmission, four allocation indices are required, one
for each 20 MHz subchannel. To configure the above scenario the allocation indices below
are used:

[X Y 192 96]

• X and Y configure the 484-tone RU, with users #1-4. The possible values of X and Y are
discussed below.

• 192 configures a 242-tone RU with one user, user #5.
• 96 signals two 106-tone RUs, each with one user, users #6 and #7.

The selection of X and Y configures the appropriate number of users in the 242-tone RU,
and determines which HE-SIG-B content channel is used to signal the users. A 484-tone
RU spans two 20 MHz subchannels, therefore two allocation indices are required. All
seven users from the four RUs will be signaled on the HE-SIG-B content channels, but for
now we will only consider the signaling of users on the 484-tone RU. For the 484-tone RU,
the four users can be signaled on the two HE-SIG-B content channels in different
combinations as shown in Table 1.

1 Tutorials

1-68

An allocation index within the range 200-207 specifies 1-8 users on a 484-tone RU. To
signal no users on a content channel, the allocation index 114 or 115 can be used, for a
448-tone or 996-tone RU. Therefore, the combinations in Table 1 can be defined using two
allocation indices as shown in Table 2. The two allocation indices in each row of Table 2
are X and Y.

Therefore, to configure 'Combination E' the following 80 MHz allocation indices are used:

[114 203 192 96]

• 114 and 203 configure the 484-tone RU, with users #1-4.
• 192 configures a 242-tone RU with one user, user #5.
• 96 signals two 106-tone RUs, each with one user, users #6 and #7.

cfg484OFDMA = wlanHEMUConfig([114 203 192 96]);
showAllocation(cfg484OFDMA,axAlloc);

 Build HE PPDU

1-69

The HE-SIG-B allocation signaling can be viewed with the function
hePlotHESIGBAllocationMapping. This shows the user fields signaled on each HE-SIG-B
content channel, and which RU and user in the wlanHEMUConfig object, each user field
signals. In this case we can see the users on RU #1, 3 and 4 are all signaled on content
channel 2, and the user of RU #2 is signaled on content channel 1. The second content
channel signals six users, while the first content channel only signals one user. Therefore,
the first content channel will be padded up to the length of the second for transmission.
In the diagram, the RU allocation information is provided in the form index-size, e.g.
RU8-106 is the 8th 106-tone RU.

figure;
hePlotHESIGBAllocationMapping(cfg484OFDMA);
axSIGB = gca; % Get axis handle for subsequent plotting

1 Tutorials

1-70

To balance the user field signaling in HE-SIG-B, we can use 'Combination B' in Table 2
when creating the allocation index for the 484-tone RU. This results in two users being
signaled on each content channel of HE-SIG-B, creating a better balance of user fields,
and potentially fewer HE-SIG-B symbols in the transmission.

cfg484OFDMABalanced = wlanHEMUConfig([201 201 96 192]);
hePlotHESIGBAllocationMapping(cfg484OFDMABalanced,axSIGB);

HE Multi User Format - Central 26-Tone RU

In an 80 MHz transmission, when a full band RU is not used, the central 26-tone RU can
be optionally active. The central 26-tone RU is enabled using a name-value pair when
creating the wlanHEMUConfig object.

% Create a configuration with no central 26-tone RU
cfgNoCentral = wlanHEMUConfig([192 192 192 192],'LowerCenter26ToneRU',false);
showAllocation(cfgNoCentral,axAlloc);

% Create a configuration with a central 26-tone RU
cfgCentral = wlanHEMUConfig([192 192 192 192],'LowerCenter26ToneRU',true);
showAllocation(cfgCentral,axAlloc);

 Build HE PPDU

1-71

Similarly, for a 160 MHz transmission, the central 26-tone RU in each 80 MHz segment
can be optionally used. Each central 26-tone RU can be enabled using name-value pairs
when creating the wlanHEMUConfig object. In this example only the upper central 26-
tone RU is created. Four 242-tone RUs, each with one user are specified with the
allocation index [200 114 114 200 200 114 114 200].

cfgCentral160MHz = wlanHEMUConfig([200 114 114 200 200 114 114 200],'UpperCenter26ToneRU',true);
disp(cfgCentral160MHz)

 wlanHEMUConfig with properties:

 RU: {1×5 cell}
 User: {1×5 cell}
 NumTransmitAntennas: 1

1 Tutorials

1-72

 STBC: 0
 GuardInterval: 3.2000
 HELTFType: 4
 SIGBMCS: 0
 SIGBDCM: 0
 UplinkIndication: 0
 BSSColor: 0
 SpatialReuse: 0
 TXOPDuration: 127
 HighDoppler: 0

 Read-only properties:
 ChannelBandwidth: 'CBW160'
 AllocationIndex: [200 114 114 200 200 114 114 200]
 LowerCenter26ToneRU: 0
 UpperCenter26ToneRU: 1

HE Multi User Format - Preamble Puncturing

In an 80 MHz or 160 MHz transmission, 20 MHz subchannels can be punctured to allow a
legacy system to operate in the punctured channel. This method is also described as
channel bonding. To null a 20 MHz subchannel the 20 MHz subchannel allocation index
113 can be used. The punctured 20 MHz subchannel can be viewed with the
showAllocation method.

% Null second lowest 20 MHz subchannel in a 160 MHz configuration
cfgNull = wlanHEMUConfig([192 113 114 200 208 115 115 115]);

% Plot the allocation
showAllocation(cfgNull,axAlloc);

 Build HE PPDU

1-73

The punctured 20 MHz can also be viewed with the generated waveform and the
spectrum analyzer.

% Set the transmission properties of each user in all RUs
cfgNull.User{1}.APEPLength = 100;
cfgNull.User{1}.MCS = 2;
cfgNull.User{1}.ChannelCoding = 'LDPC';
cfgNull.User{1}.NumSpaceTimeStreams = 1;

cfgNull.User{2}.APEPLength = 1000;
cfgNull.User{2}.MCS = 6;
cfgNull.User{2}.ChannelCoding = 'LDPC';
cfgNull.User{2}.NumSpaceTimeStreams = 1;

1 Tutorials

1-74

cfgNull.User{3}.APEPLength = 100;
cfgNull.User{3}.MCS = 1;
cfgNull.User{3}.ChannelCoding = 'LDPC';
cfgNull.User{3}.NumSpaceTimeStreams = 1;

% Create packet
txNullWaveform = wlanWaveformGenerator([1 0 1 0],cfgNull);

spectrumAnalyzer = dsp.SpectrumAnalyzer;
spectrumAnalyzer.SampleRate = wlanSampleRate(cfgNull);
spectrumAnalyzer.Title = '160 MHz HE-MU Transmission with Punctured 20 MHz Channel';
spectrumAnalyzer(txNullWaveform);

 Build HE PPDU

1-75

Trigger-Based MU Format

The HE trigger-based (TB) format allows for OFDMA or MU-MIMO transmission in the
uplink. Each station (STA) transmits an HE-TB packet simultaneously, when triggered by
the access point (AP). An HE-TB transmission is controlled entirely by the AP. All the
parameters required for the transmission are provided in a trigger frame to all STAs
participating in the TB transmission. In this example a TB transmission for three users in
an OFDMA/MU-MIMO system is configured; three STAs will transmit simultaneously to an
AP.

The 20 MHz allocation 97 is used which corresponds to two RUs, one of which serves two
users in MU-MIMO.

disp('Allocation #97 table entry:')
disp(allocationTable(98,:)) % Index 97 (row 98)

Allocation #97 table entry:
 Allocation BitAllocation NumUsers NumRUs RUIndices RUSizes NumUsersPerRU Note
 __________ _____________ ________ ______ ____________ ____________ _____________ ____

 97 "01100001" 3 2 {1×2 double} {1×2 double} {1×2 double} ""

The allocation information is obtained by creating a MU configuration with
wlanHEMUConfig.

% Generate an OFDMA allocation
cfgMU = wlanHEMUConfig(97);
allocationInfo = ruInfo(cfgMU);

In an HE-TB transmission several parameters are the same for all users in the
transmission. Some of these are specified below:

% These parameters are the same for all users in the OFDMA system
channelBandwidth = cfgMU.ChannelBandwidth; % Bandwidth of OFDMA system
numSymbols = 20; % Number of HE data field symbols
preFECPaddingFactor = 2; % Pre-FEC padding factor
ldpcExtraSymbol = false; % LDPC extra symbol
numHELTFSymbols = 2; % Number of HE-LTF symbols

A TB transmission for a single user within the system is configured with an heTBConfig
object. In this example, a cell array of three objects is created to describe the
transmission of the three users.

1 Tutorials

1-76

% Create a trigger configuration for each user
numUsers = allocationInfo.NumUsers;
cfgTriggerUser = repmat({heTBConfig},1,numUsers);

The non-default system-wide properties are set for each user.

for userIdx = 1:numUsers
 cfgTriggerUser{userIdx}.ChannelBandwidth = channelBandwidth;
 cfgTriggerUser{userIdx}.NumDataSymbols = numSymbols;
 cfgTriggerUser{userIdx}.PreFECPaddingFactor = preFECPaddingFactor;
 cfgTriggerUser{userIdx}.LDPCExtraSymbol = ldpcExtraSymbol;
 cfgTriggerUser{userIdx}.NumHELTFSymbols = numHELTFSymbols;
end

Next the per-user properties are set. When multiple users are transmitting in the same
RU, in a MU-MIMO configuration, each user must transmit on different space-time stream
indices. The properties StartingSpaceTimeStream and NumSpaceTimeStreamSteams
must be set for each user to make sure different space-time streams are used. In this
example user 1 and 2 are in a MU-MIMO configuration, therefore
StartingSpaceTimeStream for user two is set to 2, as user one is configured to
transmit 1 space-time stream with StartingSpaceTimeStream = 1.

% These parameters are for the first user - RU#1 MU-MIMO user 1
cfgTriggerUser{1}.RUSize = allocationInfo.RUSizes(1);
cfgTriggerUser{1}.RUIndex = allocationInfo.RUIndices(1);
cfgTriggerUser{1}.MCS = 4; % Modulation and coding scheme
cfgTriggerUser{1}.NumSpaceTimeStreams = 1; % Number of space-time streams
cfgTriggerUser{1}.NumTransmitAntennas = 1; % Number of transmit antennas
cfgTriggerUser{1}.StartingSpaceTimeStream = 1; % The starting index of the space-time streams
cfgTriggerUser{1}.ChannelCoding = 'LDPC'; % Channel coding

% These parameters are for the second user - RU#1 MU-MIMO user 2
cfgTriggerUser{2}.RUSize = allocationInfo.RUSizes(1);
cfgTriggerUser{2}.RUIndex = allocationInfo.RUIndices(1);
cfgTriggerUser{2}.MCS = 3; % Modulation and coding scheme
cfgTriggerUser{2}.NumSpaceTimeStreams = 1; % Number of space-time streams
cfgTriggerUser{2}.StartingSpaceTimeStream = 2; % The starting index of the space-time streams
cfgTriggerUser{2}.NumTransmitAntennas = 1; % Number of transmit antennas
cfgTriggerUser{2}.ChannelCoding = 'LDPC'; % Channel coding

% These parameters are for the third user - RU#2
cfgTriggerUser{3}.RUSize = allocationInfo.RUSizes(2);
cfgTriggerUser{3}.RUIndex = allocationInfo.RUIndices(2);
cfgTriggerUser{3}.MCS = 4; % Modulation and coding scheme

 Build HE PPDU

1-77

cfgTriggerUser{3}.NumSpaceTimeStreams = 2; % Number of space-time streams
cfgTriggerUser{3}.StartingSpaceTimeStream = 1; % The starting index of the space-time streams
cfgTriggerUser{3}.NumTransmitAntennas = 2; % Number of transmit antennas
cfgTriggerUser{3}.ChannelCoding = 'BCC'; % Channel coding

A packet containing random data is now transmitted by each user with
heTBWaveformGenerator. The waveform transmitted by each user is stored for
analysis.

trigInd = heTBFieldIndices(cfgTriggerUser{1}); % Get the indices of each field
txTrigStore = zeros(trigInd.HEData(2),numUsers);
for userIdx = 1:numUsers
 % Generate waveform for a user
 cfgTrigger = cfgTriggerUser{userIdx};
 txPSDU = randi([0 1],getPSDULength(cfgTrigger)*8,1);
 txTrig = heTBWaveformGenerator(txPSDU,cfgTrigger);

 % Store the transmitted STA waveform for analysis
 txTrigStore(:,userIdx) = sum(txTrig,2);
end

The spectrum of the transmitted waveform from each STA shows the different portions of
the spectrum used, and the overlap in the MU-MIMO RU.

spectrumAnalyzer = dsp.SpectrumAnalyzer;
spectrumAnalyzer.SampleRate = heTBSampleRate(cfgTriggerUser{1});
spectrumAnalyzer.ChannelNames = {'RU#1 User 1','RU#1 User 2','RU#2'};
spectrumAnalyzer.ShowLegend = true;
spectrumAnalyzer.Title = 'Transmitted HE-TB Waveform per User';
spectrumAnalyzer(txTrigStore);

1 Tutorials

1-78

Appendix

The RU allocation table for allocations <= 20 MHz is shown below, with annotated
descriptions.

 Build HE PPDU

1-79

The RU allocation and HE-SIG-B user signaling for allocations > 20 MHz is shown in the
table below, with annotated descriptions.

This example uses the following helper objects and functions:

1 Tutorials

1-80

• hePlotHESIGBAllocationMapping.m
• heRUAllocationTable.m
• heTBConfig.m
• heTBFieldIndices.m
• heTBSampleRate.m
• heTBWaveformGenerator.m

Selected Bibliography

1 IEEE P802.11ax™/D3.1 Draft Standard for Information technology -
Telecommunications and information exchange between systems - Local and
metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) Specifications - Amendment 6:
Enhancements for High Efficiency WLAN.

See Also
“Build HT PPDU” on page 1-89 | “Build Non-HT PPDU” on page 1-92 | “Build VHT
PPDU” on page 1-86 | “Build S1G PPDU” on page 1-84 | “Build DMG PPDU” on page 1-
82

More About
• “Multiuser HE Transmission” on page 1-33

 See Also

1-81

Build DMG PPDU
Build DMG PPDUs by using the waveform generator function.

Waveform Generator

Create an DMG configuration object.

dmg = wlanDMGConfig

dmg =
 wlanDMGConfig with properties:

 MCS: '0'
 TrainingLength: 0
 PSDULength: 1000
 ScramblerInitialization: 2
 Turnaround: 0

Generate the DMG PPDU. The length of the input data sequence in bits must be 8 times
the length of the PSDU, which is expressed in bytes. Turn off windowing.

psdu = randi([0 1],dmg.PSDULength*8,1);
tx = wlanWaveformGenerator(psdu,dmg,'WindowTransitionTime',0);

The waveform has MCS=0, which is single carrier and DBPSK modulated. Plot the
constellation of the waveform.

scatterplot(tx)

1 Tutorials

1-82

See Also
“Build HT PPDU” on page 1-89 | “Build Non-HT PPDU” on page 1-92 | “Build VHT
PPDU” on page 1-86 | “Build S1G PPDU” on page 1-84

 See Also

1-83

Build S1G PPDU
Build S1G PPDUs by using the waveform generator function.

Waveform Generator

Create an S1G configuration object.

s1g = wlanS1GConfig;

Generate the S1G PPDU. The length of the input data sequence in bits must be 8 times
the length of the PSDU, which is expressed in bytes. Turn off windowing.

x = randi([0 1],s1g.PSDULength*8,1);
y = wlanWaveformGenerator(x,s1g,'WindowTransitionTime',0);

Plot the magnitude of the waveform.

t = ((1:length(y))'-1)/80e6;
plot(t,abs(y))
xlabel('Time (s)')
ylabel('Magnitude (V)')

1 Tutorials

1-84

See Also
“Build DMG PPDU” on page 1-82 | “Build HT PPDU” on page 1-89 | “Build Non-HT
PPDU” on page 1-92 | “Build VHT PPDU” on page 1-86

 See Also

1-85

Build VHT PPDU
Build VHT PPDUs by using the waveform generator function or by building each field
individually.

Waveform Generator

Create a VHT configuration object.

vht = wlanVHTConfig;

Generate the VHT PPDU. The length of the input data sequence in bits must be 8 times
the length of the PSDU, which is expressed in bytes. Turn off windowing.

x = randi([0 1],vht.PSDULength*8,1);
y = wlanWaveformGenerator(x,vht,'WindowTransitionTime',0);

Plot the magnitude of the waveform.

t = ((1:length(y))'-1)/80e6;
plot(t,abs(y))
xlabel('Time (s)')
ylabel('Magnitude (V)')

1 Tutorials

1-86

Individual PPDU Fields

Create L-STF, L-LTF, L-SIG, VHT-SIG-A, VHT-STF, VHT-LTF, and VHT-SIG-B preamble
fields.

lstf = wlanLSTF(vht);
lltf = wlanLLTF(vht);
lsig = wlanLSIG(vht);
vhtSigA = wlanVHTSIGA(vht);
vhtstf = wlanVHTSTF(vht);
vhtltf = wlanVHTLTF(vht);
vhtSigB = wlanVHTSIGB(vht);

 Build VHT PPDU

1-87

Generate the VHT-Data field using input data field x, which was used as an input to the
waveform generator.

vhtData = wlanVHTData(x,vht);

Concatenate the individual fields to create a single PPDU.

z = [lstf; lltf; lsig; vhtSigA; vhtstf; vhtltf; vhtSigB; vhtData];

Verify that the PPDUs created by the two methods are identical.

isequal(y,z)

ans = logical
 1

See Also
“Build DMG PPDU” on page 1-82 | “Build HT PPDU” on page 1-89 | “Build Non-HT
PPDU” on page 1-92 | “Build S1G PPDU” on page 1-84

1 Tutorials

1-88

Build HT PPDU
Build HT PPDUs by using the waveform generator function or by building each field
individually.

Waveform Generator

Create an HT configuration object.

ht = wlanHTConfig;

Generate the HT PPDU. The length of the input data sequence in bits must be 8 times the
length of the PSDU, which is expressed in bytes. Turn windowing off.

x = randi([0 1],ht.PSDULength*8,1);
y = wlanWaveformGenerator(x,ht,'WindowTransitionTime',0);

Plot the magnitude of the waveform.

t = ((1:length(y))'-1)/20e6;
plot(t,abs(y))
xlabel('Time (s)')
ylabel('Magnitude (V)')

 Build HT PPDU

1-89

Individual PPDU Fields

Create L-STF, L-LTF, L-SIG, HT-SIG, HT-STF, and HT-LTF preamble fields.

lstf = wlanLSTF(ht);
lltf = wlanLLTF(ht);
lsig = wlanLSIG(ht);
htsig = wlanHTSIG(ht);
htstf = wlanHTSTF(ht);
htltf = wlanHTLTF(ht);

Generate the HT-Data field using input data field x, which is the same input signal that
was used with the waveform generator.

htData = wlanHTData(x,ht);

1 Tutorials

1-90

Concatenate the individual fields to create a single PPDU.

z = [lstf; lltf; lsig; htsig; htstf; htltf; htData];

Verify that the PPDUs created by the two methods are identical.

isequal(y,z)

ans = logical
 1

See Also
“Build DMG PPDU” on page 1-82 | “Build Non-HT PPDU” on page 1-92 | “Build S1G
PPDU” on page 1-84 | “Build VHT PPDU” on page 1-86

 See Also

1-91

Build Non-HT PPDU
Build non-HT PPDUs by using the waveform generator function or by building each field
individually.

Waveform Generator

Create a non-HT configuration object.

nht = wlanNonHTConfig;

Generate the non-HT PPDU. The length of the input data sequence in bits must be 8 times
the length of the PSDU, which is expressed in bytes. Turn off windowing.

x = randi([0 1],nht.PSDULength*8,1);
y = wlanWaveformGenerator(x,nht,'WindowTransitionTime',0);

Plot the magnitude of the waveform.

t = ((1:length(y))'-1)/20e6;
plot(t,abs(y))
xlabel('Time (s)')
ylabel('Magnitude (V)')

1 Tutorials

1-92

Individual PPDU Fields

Create L-STF, L-LTF, and L-SIG preamble fields.

lstf = wlanLSTF(nht);
lltf = wlanLLTF(nht);
lsig = wlanLSIG(nht);

Generate the Non-HT-data field using input data field x, which was used as the input to
the waveform generator.

nhtData = wlanNonHTData(x,nht);

Concatenate the individual fields to create a single PPDU.

 Build Non-HT PPDU

1-93

z = [lstf; lltf; lsig; nhtData];

Verify that the PPDUs created by the two methods are identical.

isequal(y,z)

ans = logical
 1

See Also
“Build DMG PPDU” on page 1-82 | “Build HT PPDU” on page 1-89 | “Build S1G PPDU” on
page 1-84 | “Build VHT PPDU” on page 1-86

1 Tutorials

1-94

Transmit and Recover L-SIG, VHT-SIG-A, VHT-SIG-B in
Fading Channel

Transmit a VHT waveform through a noisy MIMO channel. Extract the L-SIG, VHT-SIG-A,
and VHT-SIG-B fields and verify that they were correctly recovered.

Set the parameters used throughout the example.

cbw = 'CBW40'; % Channel bandwidth
fs = 40e6; % Sample rate (Hz)
ntx = 2; % Number of transmit antennas
nsts = 2; % Number of space-time streams
nrx = 3; % Number of receive antennas

Create a VHT configuration object that supports a 2x2 MIMO transmission and has an
APEP length of 2000.

vht = wlanVHTConfig('ChannelBandwidth',cbw,'APEPLength',2000, ...
 'NumTransmitAntennas',ntx,'NumSpaceTimeStreams',nsts, ...
 'SpatialMapping','Direct','STBC',false);

Generate a VHT waveform containing a random PSDU.

txPSDU = randi([0 1],vht.PSDULength*8,1);
txPPDU = wlanWaveformGenerator(txPSDU,vht);

Create a 2x2 TGac channel and an AWGN channel with an SNR=10 dB.

tgacChan = wlanTGacChannel('SampleRate',fs,'ChannelBandwidth',cbw, ...
 'NumTransmitAntennas',ntx,'NumReceiveAntennas',nrx, ...
 'LargeScaleFadingEffect','Pathloss and shadowing', ...
 'DelayProfile','Model-C');

chNoise = comm.AWGNChannel('NoiseMethod','Signal to noise ratio (SNR)',...
 'SNR',10);

Pass the VHT waveforms through a 2x2 TGac channel and add the AWGN channel noise.

rxPPDU = chNoise(tgacChan(txPPDU));

Add additional white noise corresponding to a receiver with a 9 dB noise figure. The noise
variance is equal to k*T*B*F, where k is Boltzmann's constant, T is the ambient
temperature, B is the channel bandwidth (sample rate), and F is the receiver noise figure.

 Transmit and Recover L-SIG, VHT-SIG-A, VHT-SIG-B in Fading Channel

1-95

nVar = 10^((-228.6+10*log10(290) + 10*log10(fs) + 9)/10);
rxNoise = comm.AWGNChannel('NoiseMethod','Variance','Variance',nVar);

rxPPDU = rxNoise(rxPPDU);

Find the start and stop indices for all component fields of the PPDU.

ind = wlanFieldIndices(vht)

ind = struct with fields:
 LSTF: [1 320]
 LLTF: [321 640]
 LSIG: [641 800]
 VHTSIGA: [801 1120]
 VHTSTF: [1121 1280]
 VHTLTF: [1281 1600]
 VHTSIGB: [1601 1760]
 VHTData: [1761 25600]

The preamble is contained in the first 1760 symbols. Plot the preamble.

plot(abs(rxPPDU(1:1760)))

1 Tutorials

1-96

Extract the L-LTF from the received PPDU using the start and stop indices determined by
the wlanFieldIndices function. Demodulate the L-LTF and estimate the channel
coefficients.

rxLLTF = rxPPDU(ind.LLTF(1):ind.LLTF(2),:);
demodLLTF = wlanLLTFDemodulate(rxLLTF,vht);
chEstLLTF = wlanLLTFChannelEstimate(demodLLTF,vht);

Extract the L-SIG field from the received PPDU and recover its information bits.

rxLSIG = rxPPDU(ind.LSIG(1):ind.LSIG(2),:);
infoLSIG = wlanLSIGRecover(rxLSIG,chEstLLTF,nVar,cbw);

 Transmit and Recover L-SIG, VHT-SIG-A, VHT-SIG-B in Fading Channel

1-97

Inspect the L-SIG rate information and confirm that the sequence [1 1 0 1] is received.
This sequence corresponds to a 6 MHz data rate, which is used for all VHT transmissions.

rate = infoLSIG(1:4)'

rate = 1x4 int8 row vector

 0 1 1 1

Extract the VHT-SIG-A and confirm that the CRC check passed.

rxVHTSIGA = rxPPDU(ind.VHTSIGA(1):ind.VHTSIGA(2),:);
[infoVHTSIGA,failCRC] = wlanVHTSIGARecover(rxVHTSIGA, ...
 chEstLLTF,nVar,cbw);
failCRC

failCRC = logical
 1

Extract and demodulate the VHT-LTF. Use the demodulated signal to estimate the channel
coefficients needed to recover the VHT-SIG-B field.

rxVHTLTF = rxPPDU(ind.VHTLTF(1):ind.VHTLTF(2),:);
demodVHTLTF = wlanVHTLTFDemodulate(rxVHTLTF,vht);
chEstVHTLTF = wlanVHTLTFChannelEstimate(demodVHTLTF,vht);

Extract and recover the VHT-SIG-B.

rxVHTSIGB = rxPPDU(ind.VHTSIGB(1):ind.VHTSIGB(2),:);
infoVHTSIGB = wlanVHTSIGBRecover(rxVHTSIGB,chEstVHTLTF,nVar,cbw);

Verify that the APEP length, contained in the first 19 bits of the VHT-SIG-B, corresponds
to the specified length of 2000 bits.

pktLbits = infoVHTSIGB(1:19)';
pktLen = bi2de(double(pktLbits))*4

pktLen = 1676920

1 Tutorials

1-98

End-to-End VHT Simulation with Frequency Correction
This example shows how to generate, transmit, recover and view a VHT MIMO waveform.

Steps in the example:

• Transmit a VHT waveform through a MIMO channel with AWGN
• Perform a two-stage process to estimate and correct for a frequency offset
• Estimate the channel response
• Recover the VHT data field
• Compare the transmitted and received PSDUs to determine if bit errors occurred

Set the parameters used throughout the example.

cbw = 'CBW160'; % Channel bandwidth
fs = 160e6; % Sample rate (Hz)
ntx = 2; % Number of transmit antennas
nsts = 2; % Number of space-time streams
nrx = 2; % Number of receive antennas

Create a VHT configuration object that supports a 2x2 MIMO transmission and has an
APEP length of 2000.

vht = wlanVHTConfig('ChannelBandwidth',cbw,'APEPLength',2000, ...
 'NumTransmitAntennas',ntx,'NumSpaceTimeStreams',nsts, ...
 'SpatialMapping','Direct','STBC',false);

Generate a VHT waveform containing a random PSDU.

txPSDU = randi([0 1],vht.PSDULength*8,1);
txPPDU = wlanWaveformGenerator(txPSDU,vht);

Create a 2x2 TGac channel and an AWGN channel.

tgacChan = wlanTGacChannel('SampleRate',fs,'ChannelBandwidth',cbw, ...
 'NumTransmitAntennas',ntx,'NumReceiveAntennas',nrx, ...
 'LargeScaleFadingEffect','Pathloss and shadowing', ...
 'DelayProfile','Model-C');
awgnChan = comm.AWGNChannel('NoiseMethod','Variance', ...
 'VarianceSource','Input port');

Create a phase/frequency offset object.

 End-to-End VHT Simulation with Frequency Correction

1-99

pfOffset = comm.PhaseFrequencyOffset('SampleRate',fs,'FrequencyOffsetSource','Input port');

Calculate the noise variance for a receiver with a 9 dB noise figure. Pass the transmitted
waveform through the noisy TGac channel.

nVar = 10^((-228.6 + 10*log10(290) + 10*log10(fs) + 9)/10);
rxPPDU = awgnChan(tgacChan(txPPDU), nVar);

Introduce a frequency offset of 500 Hz.

rxPPDUcfo = pfOffset(rxPPDU,500);

Find the start and stop indices for all component fields of the PPDU.

ind = wlanFieldIndices(vht);

Extract the L-STF. Estimate and correct for the carrier frequency offset.

rxLSTF = rxPPDUcfo(ind.LSTF(1):ind.LSTF(2),:);

foffset1 = wlanCoarseCFOEstimate(rxLSTF,cbw);
rxPPDUcorr = pfOffset(rxPPDUcfo,-foffset1);

Extract the L-LTF from the corrected signal. Estimate and correct for the residual
frequency offset.

rxLLTF = rxPPDUcorr(ind.LLTF(1):ind.LLTF(2),:);

foffset2 = wlanFineCFOEstimate(rxLLTF,cbw);
rxPPDU2 = pfOffset(rxPPDUcorr,-foffset2);

Extract and demodulate the VHT-LTF. Estimate the channel coefficients.

rxVHTLTF = rxPPDU2(ind.VHTLTF(1):ind.VHTLTF(2),:);
dLTF = wlanVHTLTFDemodulate(rxVHTLTF,vht);
chEst = wlanVHTLTFChannelEstimate(dLTF,vht);

Extract the VHT data field from the received and frequency-corrected PPDU. Recover the
data field.

rxVHTData = rxPPDU2(ind.VHTData(1):ind.VHTData(2),:);
rxPSDU = wlanVHTDataRecover(rxVHTData,chEst,nVar,vht);

Calculate the number of bit errors in the received packet.

numErr = biterr(txPSDU,rxPSDU)

1 Tutorials

1-100

numErr = 0

 End-to-End VHT Simulation with Frequency Correction

1-101

Transmit-Receive Chain
In this section...
“Transmit Processing Chain” on page 1-102
“Receiver Processing Chain” on page 1-108

WLAN Toolbox functionality includes elements of a standard transmitter–channel–receiver
processing chain.

• Transmitter functions enable simulation of the various IEEE 802.11 2 formats. The
simulated waveform includes preamble and data fields of the PPDU. You can use this
waveform in link-level simulations. You can also use it as a test signal for test devices
and equipment.

• Channel functions model various types of AWGN, fading, or moving channel
environmental effects.

• Receiver functions recover the transmitted signal.

Transmit Processing Chain
WLAN Toolbox functions enable you to generate waveforms for a complete PPDU or for
the individual fields of VHT, HT-mixed, and non-HT format PPDUs.

VHT Data Transmit Processing Chain

As described in IEEE 802.11ac-2013 [4], Section 22 specifies the PHY entity for a very
high throughput (VHT) orthogonal frequency division multiplexing (OFDM) system. A

2. IEEE Std 802.11-2016 Adapted and reprinted with permission from IEEE. Copyright IEEE 2016. All
rights reserved.

1 Tutorials

1-102

VHT STA must be capable of transmitting and receiving HT-PHY and non-HT-PHY-
compliant PPDUs. Specifically, the VHT PHY is based on the HT PHY defined in Section
20, which in turn is based on the OFDM PHY defined in Section 18. The VHT PHY extends
the maximum number of space-time streams supported to eight and provides support for
downlink multiuser (MU) transmissions. A downlink MU transmission supports up to four
users with up to four space-time streams per user, with the total number of space-time
streams not exceeding eight.

IEEE Std 802.11ac-2013 [4], Section 22 defines requirements for physical layer
processing associated with each PPDU field for the VHT format.

 Transmit-Receive Chain

1-103

1 Tutorials

1-104

HT Data Transmit Processing Chain

IEEE 802.11-2012 [3], Section 20 defines requirements for physical layer processing
associated with each PPDU field for the HT-mixed format.

 Transmit-Receive Chain

1-105

Non-HT Data Transmit Processing Chain

IEEE 802.11-2012 [3], Section 18 defines requirements for physical layer processing
associated with each PPDU field for the OFDM modulation scheme. IEEE 802.11-2012 [3],
Section 17, and Section 19 define requirements for physical layer processing associated
with each PPDU field for the DSSS modulation scheme.

1 Tutorials

1-106

 Transmit-Receive Chain

1-107

Receiver Processing Chain
WLAN Toolbox functions enable you to recover transmitted VHT, HT-mixed, and non-HT
format PPDUs. The receive processing chain includes synchronization, OFDM
demodulation, channel estimation, equalization, and signal and data recovery.

VHT Data Receive Processing Chain

This figure shows the receiver elements used to process the VHT Data field. The “Signal
Reception” category includes a list of all receiver functions in the WLAN Toolbox.

1 Tutorials

1-108

 Transmit-Receive Chain

1-109

HT Data Receive Processing Chain

This figure shows the receiver elements used to process the HT Data field. The “Signal
Reception” category includes a list of all receiver functions in the WLAN Toolbox.

1 Tutorials

1-110

 Transmit-Receive Chain

1-111

Non-HT Data Receive Processing Chain

This figure shows the receiver elements used to process the non-HT Data field. The
“Signal Reception” category includes a list of all receiver functions in the WLAN Toolbox.

1 Tutorials

1-112

 Transmit-Receive Chain

1-113

References
[1] IEEE 802.11™: Wireless LANs. http://standards.ieee.org/about/get/802/802.11.html

[2] IEEE Std 802.11™-2016 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

[3] IEEE Std 802.11™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

[4] IEEE Std 802.11ac™-2013 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 4: Enhancements for Very High Throughput for Operation in Bands
below 6 GHz.

[5] IEEE Std 802.11ad™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band.

[6] Perahia, E., and R. Stacey. Next Generation Wireless LANs: 802.11n and 802.11ac.
2nd Edition. United Kingdom: Cambridge University Press, 2013.

See Also
“Transmit and Recover L-SIG, VHT-SIG-A, VHT-SIG-B in Fading Channel” on page 1-95 |
“End-to-End VHT Simulation with Frequency Correction” on page 1-99

1 Tutorials

1-114

Delay Profile and Fluorescent Lighting Effects
This example demonstrates the impact of changing the TGac delay profile, and it shows
how fluorescent lighting affects the time response of the channel.

Delay Profile Effects

Create VHT configuration object. Set the sample rate to 80 MHz.

vht = wlanVHTConfig;
fs = 80e6;

Generate random binary data and create a transmit waveform using the configuration
objects.

d = randi([0 1],8*vht.PSDULength,1);
txSig = wlanWaveformGenerator(d,vht);

Create a TGac channel object. Set the delay profile to 'Model-A', which corresponds to
flat fading. Disable the large-scale fading effects.

tgacChan = wlanTGacChannel('SampleRate',fs, ...
 'ChannelBandwidth',vht.ChannelBandwidth, ...
 'DelayProfile','Model-A', ...
 'LargeScaleFadingEffect','None');

Pass the transmitted waveform through the TGac channel.

rxSigA = tgacChan(txSig);

Set the delay profile to 'Model-C'. Model-C corresponds to a multipath channel having
14 distinct paths, with a 30 ns RMS delay spread. The maximum delay spread is 200 ns,
which corresponds to a coherence bandwidth of 2.5 MHz.

release(tgacChan)
tgacChan.DelayProfile = 'Model-C';

Pass the waveform through the model-C channel.

rxSigC = tgacChan(txSig);

Create a spectrum analyzer and use it to visualize the spectrum of the received signals.

saScope = dsp.SpectrumAnalyzer('SampleRate',fs, ...
 'ShowLegend',true,'ChannelNames',{'Model-A','Model-C'}, ...

 Delay Profile and Fluorescent Lighting Effects

1-115

 'SpectralAverages',10);
saScope([rxSigA rxSigC])

As expected, the frequency response of the model-A signal is flat across the 80 MHz
bandwidth. Conversely, the model-C frequency response varies because its coherence
bandwidth is much smaller than the channel bandwidth.

Fluorescent Effects

Release the TGac channel, and set its delay profile to 'Model-D'. Disable the fluorescent
lighting effect.

release(tgacChan)
tgacChan.DelayProfile = 'Model-D';
tgacChan.FluorescentEffect = false;

1 Tutorials

1-116

To better illustrate the Doppler effects of fluorescent lighting, change the bandwidth and
sample rate of the channel. Generate a test waveform of all ones.

tgacChan.ChannelBandwidth = 'CBW20';
fs = 20e6;
tgacChan.SampleRate = fs;

txSig = ones(5e5,1);

To ensure repeatability, set the global random number generator to a fixed value.

rng(37)

Pass the waveform through the TGac channel.

rxSig0 = tgacChan(txSig);

Enable the fluorescent lighting effect. Reset the random number generator, and pass the
waveform through the channel.

release(tgacChan)
tgacChan.FluorescentEffect = true;
rng(37)
rxSig1 = tgacChan(txSig);

Determine the time axis and channel filter delay.

t = ((1:size(rxSig0,1))'-1)/fs;
fDelay = tgacChan.info.ChannelFilterDelay;

Plot the magnitude of the received signals while accounting for the channel filter delay.

plot(t(fDelay+1:end),[abs(rxSig0(fDelay+1:end)) abs(rxSig1(fDelay+1:end))])
xlabel('Time (s)')
ylabel('Magnitude (V)')
legend('Fluorescent Off','Fluorescent On','location','best')

 Delay Profile and Fluorescent Lighting Effects

1-117

Fluorescent lighting introduces a Doppler component at twice the power line frequency
(120 Hz in the U.S.).

Confirm that the peaks are separated by approximately 0.0083 s (inverse of 120 Hz) by
measuring distance between the second and third peaks.

[~,loc] = findpeaks(abs(rxSig1(1e5:4e5)));
peakTimes = loc/fs;
peakSeparation = diff(peakTimes)

peakSeparation =

1 Tutorials

1-118

 0.0085

 Delay Profile and Fluorescent Lighting Effects

1-119

Generate Multi-User VHT Waveform
This example shows how to generate a multi-user VHT waveform from individual
components. It also shows how to generate the same waveform by using the
wlanWaveformGenerator function. The data fields from the two approaches are
compared and shown to be identical.

Create a VHT configuration object having 3 users and 3 transmit antennas.

vht = wlanVHTConfig('NumUsers',3,'NumTransmitAntennas',3);

Set the number of space-time streams to the vector [1 1 1], which indicates that each
user is assigned one space-time stream. Set the user positions to [0 1 2]. Set the group
ID to 5. Group ID values from 1 to 62 apply for multi-user operation.

vht.NumSpaceTimeStreams = [1 1 1];
vht.UserPositions = [0 1 2];
vht.GroupID = 5;

Set a different MCS value for each user.

vht.MCS = [0 2 4];

Set the APEP length to 2000, 1400, and 1800 bytes. Each element corresponds to the
number of bytes assigned to each user.

vht.APEPLength = [2000 1400 1800]

vht =
 wlanVHTConfig with properties:

 ChannelBandwidth: 'CBW80'
 NumUsers: 3
 UserPositions: [0 1 2]
 NumTransmitAntennas: 3
 NumSpaceTimeStreams: [1 1 1]
 SpatialMapping: 'Direct'
 MCS: [0 2 4]
 ChannelCoding: 'BCC'
 APEPLength: [2000 1400 1800]
 GuardInterval: 'Long'
 GroupID: 5

 Read-only properties:

1 Tutorials

1-120

 PSDULength: [2000 6008 12019]

Display the PSDU lengths for the three users. The PSDU length is a function of both the
APEP length and the MCS value.

vht.PSDULength

ans = 1×3

 2000 6008 12019

Display the field indices for the VHT waveform.

ind = wlanFieldIndices(vht)

ind = struct with fields:
 LSTF: [1 640]
 LLTF: [641 1280]
 LSIG: [1281 1600]
 VHTSIGA: [1601 2240]
 VHTSTF: [2241 2560]
 VHTLTF: [2561 3840]
 VHTSIGB: [3841 4160]
 VHTData: [4161 48000]

Create the individual fields that comprise the VHT waveform.

lstf = wlanLSTF(vht);
lltf = wlanLLTF(vht);
lsig = wlanLSIG(vht);
[vhtsigA,sigAbits] = wlanVHTSIGA(vht);
vhtstf = wlanVHTSTF(vht);
vhtltf = wlanVHTLTF(vht);
[vhtsigB,sigBbits] = wlanVHTSIGB(vht);

Extract the first two VHT-SIG-A information bits and convert them to their decimal
equivalent.

bw = bi2de(double(sigAbits(1:2)'))

bw = 2

The value, 2, corresponds to an 80 MHz bandwidth (see wlanVHTSIGA).

 Generate Multi-User VHT Waveform

1-121

Extract VHT-SIG-A information bits 5 through 10, and convert them to their decimal
equivalent.

groupid = bi2de(double(sigAbits(5:10)'))

groupid = 5

The extracted group ID, 5, matches the corresponding property in the VHT configuration
object.

Extract the packet length from the VHT-SIG-B information bits. For multi-user operation
with an 80 MHz bandwidth, the first 19 bits contain the APEP length information. Convert
the field lengths to their decimal equivalents. Multiply them by 4 because the length of
the VHT-SIG-B field is expressed in units of 4 bytes.

pktLen = bi2de(double(sigBbits(1:19,:)'))*4

pktLen = 3×1

 2000
 1400
 1800

Confirm that the extracted APEP length matches the value set in the configuration object.

isequal(pktLen',vht.APEPLength)

ans = logical
 1

Extract the MCS values from the VHT-SIG-B information bits. The MCS component is
specified by bits 20 to 23.

mcs = bi2de(double(sigBbits(20:23,:)'))

mcs = 3×1

 0
 2
 4

The values correspond to those set in the VHT configuration object.

1 Tutorials

1-122

Create three data sequences, one for each user.

d1 = randi([0 1],vht.PSDULength(1)*8,1);
d2 = randi([0 1],vht.PSDULength(2)*8,1);
d3 = randi([0 1],vht.PSDULength(3)*8,1);

Generate a VHT data field using these data sequences.

vhtdata = wlanVHTData({d1 d2 d3},vht);

Generate a multi-user VHT waveform with windowing is disabled. Extract the data field
from the waveform.

wv = wlanWaveformGenerator({d1 d2 d3},vht,'WindowTransitionTime',0);

wvdata = wv(ind.VHTData(1):ind.VHTData(2),:);

Confirm that the two generation approaches produce identical results.

isequal(vhtdata,wvdata)

ans = logical
 1

 Generate Multi-User VHT Waveform

1-123

Basic VHT Data Recovery Steps
This example shows how to perform basic VHT data recovery. It also shows how to
recover VHT data when the received signal has a carrier frequency offset. Similar
procedures can be used to recover data with the HT and non-HT formats.

Basic Data Recovery

The WLAN Toolbox™ provides functions to generate and recover IEEE® 802.11ac™
standards compliant waveforms. Data recovery is accomplished by these steps:

1 Generate a VHT waveform
2 Pass the waveform through a channel
3 Extract the VHT-LTF and demodulate
4 Estimate the channel by using the demodulated VHT-LTF
5 Extract the data field
6 Recover the data by using the channel and noise variance estimates

The block diagram shows these steps, along with their corresponding commands.

1 Tutorials

1-124

Create VHT format configuration object.

vht = wlanVHTConfig;

Create a VHT transmit waveform by using the VHT configuration object. Set the data
sequence to [1;0;1;1]. The data sequence is repeated to generate the specified number
of packets.

txSig = wlanWaveformGenerator([1;0;1;1],vht);

Pass the received signal through an AWGN channel.

rxSig = awgn(txSig,10);

Determine the field indices of the waveform.

ind = wlanFieldIndices(vht);

Extract the VHT-LTF from the received signal.

rxVHTLTF = rxSig(ind.VHTLTF(1):ind.VHTLTF(2),:);

Demodulate the VHT-LTF. Estimate the channel response by using the demodulated
signal.

demodVHTLTF = wlanVHTLTFDemodulate(rxVHTLTF,vht);
chEst = wlanVHTLTFChannelEstimate(demodVHTLTF,vht);

Extract the VHT data field.

rxData = rxSig(ind.VHTData(1):ind.VHTData(2),:);

Recover the information bits by using the channel and noise variance estimates. Confirm
that the first 8 bits match two repetitions of the input data sequence of [1;0;1;1].

rxBits = wlanVHTDataRecover(rxData,chEst,0.1,vht);

rxBits(1:8)

ans = 8x1 int8 column vector

 1
 0
 1
 1

 Basic VHT Data Recovery Steps

1-125

 1
 0
 1
 1

Data Recovery with Frequency Correction

Data recovery when a carrier frequency offset is present is accomplished by these steps:

1 Generate a VHT waveform
2 Pass the waveform through a channel
3 Extract the L-STF and perform a coarse frequency offset estimate
4 Correct for the offset by using the coarse estimate
5 Extract the L-LTF and perform a fine frequency offset estimate
6 Correct for the offset by using the fine estimate
7 Extract the VHT-LTF and demodulate
8 Estimate the channel by using the demodulated VHT-LTF
9 Extract the data field
10 Recover the data by using the channel and noise variance estimates

The block diagram shows these steps, along with their corresponding commands.

1 Tutorials

1-126

Set the channel bandwidth and sample rate.

cbw = 'CBW160';
fs = 160e6;

Create a VHT configuration object that supports a 2x2 MIMO transmission.

vht = wlanVHTConfig('ChannelBandwidth',cbw, ...
 'NumTransmitAntennas',2,'NumSpaceTimeStreams',2);

Generate a VHT waveform containing a random PSDU.

txPSDU = randi([0 1],vht.PSDULength*8,1);
txSig = wlanWaveformGenerator(txPSDU,vht);

Create a 2x2 TGac channel.

tgacChan = wlanTGacChannel('SampleRate',fs,'ChannelBandwidth',cbw, ...
 'NumTransmitAntennas',2,'NumReceiveAntennas',2);

Create a phase and frequency offset object.

pfOffset = comm.PhaseFrequencyOffset('SampleRate',fs,'FrequencyOffsetSource','Input port');

Pass the transmitted waveform through the noisy TGac channel.

 Basic VHT Data Recovery Steps

1-127

rxSigNoNoise = tgacChan(txSig);
rxSig = awgn(rxSigNoNoise,15);

Introduce a frequency offset of 500 Hz to the received signal.

rxSigFreqOffset = pfOffset(rxSig,500);

Find the start and stop indices for all component fields of the PPDU.

ind = wlanFieldIndices(vht);

Extract the L-STF. Estimate and correct for the carrier frequency offset.

rxLSTF = rxSigFreqOffset(ind.LSTF(1):ind.LSTF(2),:);

foffset1 = wlanCoarseCFOEstimate(rxLSTF,cbw);
rxSig1 = pfOffset(rxSigFreqOffset,-foffset1);

Extract the L-LTF from the corrected signal. Estimate and correct for the residual
frequency offset.

rxLLTF = rxSig1(ind.LLTF(1):ind.LLTF(2),:);

foffset2 = wlanFineCFOEstimate(rxLLTF,cbw);
rxSig2 = pfOffset(rxSig1,-foffset2);

Extract and demodulate the VHT-LTF. Estimate the channel coefficients.

rxVHTLTF = rxSig2(ind.VHTLTF(1):ind.VHTLTF(2),:);
demodVHTLTF = wlanVHTLTFDemodulate(rxVHTLTF,vht);
chEst = wlanVHTLTFChannelEstimate(demodVHTLTF,vht);

Extract the VHT data field from the received and frequency-corrected PPDU. Recover the
data field.

rxData = rxSig2(ind.VHTData(1):ind.VHTData(2),:);
rxPSDU = wlanVHTDataRecover(rxData,chEst,0.03,vht);

Calculate the number of bit errors in the received packet.

numErr = biterr(txPSDU,rxPSDU)

numErr = 2

1 Tutorials

1-128

Packet Size and Duration Dependencies
WLAN standards specify a maximum packet duration (TXTIME) for the various formats.
The HE and S1G formats additionally specify the maximum PSDU length
(PSDU_LENGTH) and number of symbols (NSYM). These WLAN properties are a function
of transmission properties set in WLAN Toolbox configuration objects. The settings of
WLAN format-specific configuration objects are validated when the object is used.
Command-line feedback informs you when the configuration violates the packet size or
duration limits.

This table indicates relevant properties that help determine the packet duration and
length for the various WLAN formats. It also provides references to the IEEE standards
for further details.

 Packet Size and Duration Dependencies

1-129

WLAN
Format

Length-Related Validation Relevant and Dependent
Properties

HE TXTIME and PSDU_LENGTH require
validation.

TXTIME and PSDU_LENGTH are
defined by the equations in IEEE Std
P802.11ax/D2.0 [5], Section 28.4.3.

As specified by aPPDUMaxTime and
aPSDUMaxLength in Table 28-50, the
maximum TXTIME is 5.484 ms and the
maximum PSDU_Length is 6,500,631
octets.

For single user HE and single user
extended range HE:

For PSDU_LENGTH:

1 ChannelBandwidth
2 NumSpaceTimeStreams
3 STBC
4 MCS
5 DCM
6 ChannelCoding
7 APEPLength

For TXTIME:

1 All the above PSDU_LENGTH
properties

2 ExtendedRange
3 GuardInterval
4 HELTFType
5 HighDoppler
6 MidamblePeriodictiy(he_1)

For multiuser HE:

The PSDU_LENGTH is different for
each user in the configuration, but the
transmit time is the same (like VHT).
For PSDU_LENGTH:

• Can vary per user:

1 User RU size is based on:

a AllocationIndex

1 Tutorials

1-130

WLAN
Format

Length-Related Validation Relevant and Dependent
Properties

b ChannelBandwidth, which
is derived from
AllocationIndex

c Lower26ToneRU(he_2)

d Upper26ToneRU(he_2)

2 NumSpaceTimeStreams
3 MCS
4 DCM
5 ChannelCoding
6 APEPLength

• Same for all users:

• STBC

For TXTIME:

1 The above PSDU_LENGTH
properties that can vary per user

2 GuardInterval
3 HELTFType
4 SIGBCompression(he_3)(he_4)

5 SIGBMCS
6 SIGBDCM
7 HighDoppler
8 MidamblePeriodictiy(he_1)

Notes:

(he_1) MidamblePeriodictiy is only
relevant when HighDoppler is true.

(he_2) Lower26ToneRU and
Upper26ToneRU are only relevant if
the user for which the PSDU_LENGTH

 Packet Size and Duration Dependencies

1-131

WLAN
Format

Length-Related Validation Relevant and Dependent
Properties
is derived is allocated on either of
these RUs.

(he_3) If SIG-B compression is used,
there is common field in HE-SIG-B
field that affects the TXTIME
computation.

(he_4) The SIGBCompression property is
only relevant when a full-band 20 MHz
allocation is specified.

DMG TXTIME requires validation.

TXTIME is defined by the equations in
IEEE Std 802.11ad [3], Section
21.12.3.

As specified by aPPDUMaxTime in
Table 21-31, the maximum TXTIME is
2 ms.

1 MCS (dmg_1)

2 PSDULength
3 TrainingLength (dmg_1)

4 PacketType (dmg_1)

5 BeamTrackingRequest (dmg_1)

Notes:

(dmg_1) The property helps determine
whether the packet is a beam
refinement protocol (BRP) packet
containing training fields or if it is a
general packet signaling the number of
fields to append. For more information,
see 802.11ad [3], Table 4.

1 Tutorials

1-132

WLAN
Format

Length-Related Validation Relevant and Dependent
Properties

S1G TXTIME, PSDU_LENGTH, and NSYM
require validation.

The equations for all three are defined
in draft standard IEEE P802.11ah/
D5.0, Section 24.4.3, and the
maximum TXTIME and
PSDU_LENGTH are defined in Table
24-37.

In Table 24-37:

• As specified by aPPDUMaxTime,
the maximum TXTIME is 27.92 ms.
This TXTIME is the maximum PPDU
duration for an S1G_1M PPDU
with:

• A bandwidth of 1 MHz
• S1G MCS set to 10
• One spatial stream, limited by a

PSDU length of 511 octets.
• As specified by aPPDUMaxLength,

the maximum PSDU_LENGTH is
797,159 octets. This PSDU length is
the maximum length in octets for
an S1G SU PPDU with:

• A bandwidth of 16 MHz
• S1G-MCS set to 9
• Four spatial streams, limited by

511 data symbols supported by
the Length field in the S1G SIG
field, excluding the SERVICE
field and tail bits.

• The maximum NSYM is 511.

For TXTIME, the relevant properties
are:

1 ChannelBandwidth
2 STBC (s1g_1)

3 GuardInterval
4 ChannelCoding (MU)

5 APEPLength (MU)

6 PSDULength – This property is
read-only. When undefined,
PSDULength is returned as empty
of size 1×0. An empty return can
happen when the set of property
values for the object define an
invalid state. (MU)

7 MCS (MU)

8 NumSpaceTimeStreams (MU)

9 NumUsers

For PSDU_LENGTH and NSYM, the
relevant properties are:

1 ChannelBandwidth
2 STBC (s1g_1)

3 ChannelCoding (MU)

4 APEPLength (MU)

5 PSDULength – This property is
read-only. When undefined,
PSDULength is returned as empty,
[]. An empty return can happen
when the set of property values for
the object define an invalid state.
(MU)

 Packet Size and Duration Dependencies

1-133

WLAN
Format

Length-Related Validation Relevant and Dependent
Properties
6 MCS (MU)

7 NumSpaceTimeStreams (MU)

8 NumUsers

Notes:

(s1g_1) The property is relevant only
when NumUsers = 1.

(MU) The property has multiple values
for multiuser operation.

VHT TXTIME requires validation.

TXTIME is defined by the equations in
IEEE Std 802.11ac-2013 [4], Section
22.4.3 and the maximum TXTIME.

As specified by aPPDUMaxTime in
Table 22-29, the maximum TXTIME is
5.484 ms.

1 ChannelBandwidth
2 STBC (vht_1)

3 GuardInterval
4 ChannelCoding (MU)

5 APEPLength (MU)

6 PSDULength – This property is
read only. When undefined, it is
returned as an empty of size 1×0.
(MU)

7 MCS (MU)

8 NumSpaceTimeStreams (MU)

9 NumUsers

Notes:

(vht_1) The property is relevant only
when NumUsers = 1.

(MU) The property has multiple values
for multiuser operation.

1 Tutorials

1-134

WLAN
Format

Length-Related Validation Relevant and Dependent
Properties

HT TXTIME requires validation.

TXTIME is defined by the equations in
IEEE Std 802.11-2012 [2], Section
20.4.3.

As specified by aPPDUMaxTime in
Table 20-25, the maximum TXTIME is
10 ms.

1 ChannelBandwidth
2 GuardInterval
3 ChannelCoding
4 PSDULength
5 MCS
6 NumSpaceTimeStreams
7 NumExtensionStreams

non-HT TXTIME requires validation.

TXTIME is defined by the equations in
IEEE Std 802.11-2012 [2], Section
18.4.3.

Based on equation 18–29 and a valid
combination of property settings, the
maximum TXTIME is 21.936 ms.

1 Modulation (non-ht_1)

2 PSDULength
3 MCS (non-ht_1)

4 DateRate (non-ht_1)

Notes:

(non-ht_1) DataRate or MCS might be
relevant depending on the
Modulation setting.

References
[1] IEEE Std 802.11™-2016 IEEE Standard for Information technology —

Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

[2] IEEE Std 802.11™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

[3] IEEE Std 802.11ad™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band.

 Packet Size and Duration Dependencies

1-135

[4] IEEE Std 802.11ac™-2013 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 4: Enhancements for Very High Throughput for Operation in Bands
below 6 GHz.

[5] IEEE Std P802.11ax™/D2.0 Draft Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 6: Enhancements for High Efficiency WLAN.

See Also

More About
• “WLAN Packet Structure” on page 1-4

1 Tutorials

1-136

